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LOGISTICS MANAGEMENT INSTITUTE 

Optimizing Spares Support: 
The Aircraft Sustainability Model 

Executive Summary 

Modern inventory management looks as much to quick response to provide 
materiel when requested as it does to buying and holding in anticipation of 
demand. Particularly when inventoried items are low cost, stable in demand, 
and may be procured quickly, the practice is to carry as little inventory as possi- 
ble. Variants of the "just-in-time" principle, including indefinite delivery, indefi- 
nite quantity contracts with vendors, and the use of commercial overnight 
delivery services, allow managers to treat the holding of inventory as a last 
resort. 

Supporting advanced military equipment, however, poses unique problems 
that demand more sophisticated treatment. A modern warplane contains many 
components designed to be removed and replaced when they fail rather than to 
be repaired in place. Many of these components — brake assemblies, avionics 
units, and engine fuel controls — are expensive enough to warrant repair in their 
own right at the operating location, a military maintenance depot, or a commer- 
cial contractor. Spares of these reparable components are needed to keep the 
even-more-expensive aircraft ready to fly while the failed component is being 
repaired. The typical small fleet sizes and low operating tempo of military air- 
craft (or similar end items) lead to sporadic and unstable demand patterns; the 
specialized nature of many components leads to small market size and procure- 
ment lead-times that can stretch into years. These two factors limit the utility of 
some of the newer commercial practices and argue in favor of large inventories 
to ensure support of the end items. Yet, when unit costs for some components 
approach $1 million, the necessity to keep inventories as small as possible is 
obvious. 

Military materiel management, then, must use as much of modern commer- 
cial practice as practical so that spares can be repaired and shipped quickly. But 
these methods do not eliminate the need to forecast requirements and make the 
best inventory decisions possible. Certainly, the decision of what expensive, 
long lead-time component spares should be procured for the inventory will 
always be a critical one with expensive consequences. 

The Aircraft Sustainability Model (ASM), developed by the Logistics Man- 
agement Institute for the United States Air Force (USAF), is a mathematical sta- 
tistical model that computes optimal spares mixes to support a wide range of 
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possible operating scenarios. In contrast to the typical practice, the ASM sizes 
the spares inventory based explicitly on desired weapon system readiness levels, 
such as aircraft availability — the percentage of the fleet ready to fly a mission 
— rather than supply-oriented measures, such as stock on the shelf or percent- 
age of demands filled. 

The ASM is used by the USAF to determine spares kits to support squadron 
deployments in wartime and has been specially enhanced for the initial provi- 
sioning process. It is in use by the USAF for initial provisioning for the F-22 
Advanced Tactical Fighter and the E-8 Joint Surveillance, Target Attack Radar 
System (JSTARS); it has been proposed as a Department of Defense standard. 
The ASM uses the typical component data — demand rates, repair times, unit 
cost, and so on — in concert with any of a wide range of operating scena- 
rios — number of aircraft, time phasing of aircraft procurement, and operating 
tempo. The ASM then uses a marginal analysis approach, ranking possible addi- 
tions to the inventory in terms of their probable benefit to aircraft availability 
divided by their procurement cost. Spares that have the greatest benefit per dol- 
lar appear at the top of this "shopping list." Accumulated costs and resulting 
aircraft availability are tracked as the shopping list is formed to provide a curve 
relating overall funding and projected availability. 

The curve can be used by logistics planners to formulate budgets and allo- 
cate resources. On the component level, item managers can use the shopping list 
to determine detailed buy requirements consistent with those aggregate funding 
decisions. The mathematical algorithm ensures that the shopping list is 
optimal — given a funding level, buying down the list until that level is reached 
provides the highest aircraft availability rate; conversely, given an availability 
rate target, the shopping list provides the least cost mix to reach that target. 
While these projections are probabilistic in nature, and unavoidably subject to 
uncertainty, they make the best possible use of the data available. 

The ASM resides on a PC platform with a graphical user interface and an 
integrated database management system to aid user analyses. It can accommo- 
date a wide range of support system and aircraft operating characteristics, 
including the supply and maintenance system echelon structure, the aircraft 
indenture structure, cannibalization, flying profiles, and support structures. 

The ASM is the state of the art in spares requirement models. It is highly 
capable, yet user-friendly. Its basic principles have been proven in use by the 
USAF, the National Aeronautical and Space Administration International Space 
Station Program, and the Israel Air Force. The greater efficiency of the ASM's 
optimization can lead to savings of up to 25 percent in spares inventory without 
degrading support. 
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1.0 Introduction 

Military planners must calculate spares requirements to support weapon- 
system readiness over a wide range of possible situations. Using the operational 
parameters of those situations and the characteristics of the weapon system's 
components — including projected failure rates, repair times, and procurement 
costs — the Aircraft Sustainability Model (ASM) computes cost-effective spares 
mixes to minimize waiting time for spare parts. This report documents the tech- 
nical and mathematical structure of the ASM. It provides a complete description 
of the ASM: what it does, how it does it, and why it works. It is intended for 
readers with a reasonable background in probability and statistics. The treat- 
ment is otherwise self-contained; familiarity with multi-echelon inventory the- 
ory is helpful but not necessary. 

In selecting specific spare parts to be procured, the model employs a 
weapon-system approach, which calls for item decisions to be based explicitly 
upon their effect on the weapon systems being supported. As the measure of 
performance, we use the ultimate goal of the logistics system: available aircraft. 
Availability (at a particular time for a particular aircraft type) is the percentage 
of the fleet that is not grounded for lack of spare parts. Spares are bought using 
a marginal analysis technique that purchases items on the basis of their contribu- 
tion to weapon-system availability per unit cost, thus guaranteeing cost-effective 
spares mixes. Summary information relating aggregate cost to resulting aircraft 
fleet availability over the complete range of alternatives is presented to help 
planners make budgeting and funding decisions (see Figure 1-1). This marginal 
analysis approach can be applied to any weapon system, from aircraft to air 
defense radars. 

100 

Availability   50 

(percent) 

Target availability                            / 

. —"-^                                   ' 

Budget requirement 

Dollars 

Figure 1-1. 
Availability-vs.-Cost Curve 
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The scope of the model is a single weapon system. An aircraft is "down for 
supply" or not mission-capable — supply (NMCS) upon failure of a component 
for which no spare is available. All failures occur at first-echelon sites (bases). 
The bases are assumed to be uniform with respect to demands, resupply times, 
and repair capabilities. If an item cannot be repaired at the base, it is shipped to 
the second echelon (depot) for possible repair, and replenishment from the depot 
is immediately requested. At the depot, the item may be repaired or con- 
demned. Both echelons — base and depot — are presumed to operate using an 
(s -1, s) inventory policy, under which, with every demand, a resupply action is 
initiated immediately. 

The model requires a number of item-specific factors, such as demands (fail- 
ures) per flying hour, base and depot repair times, the probability of repair at 
each site, condemnation rates, transportation times, unit cost, quantity per appli- 
cation (QPA), and procurement lead-time. 

Also required is the operating tempo (i.e., the weapon system's flying-hour 
program). The flying program may be for a steady-state period, for a period 
with a varying daily flying-hour profile, or for a combination of both. Deriving 
these flying hours from the more detailed conflict scenarios available to war 
planners (sortie rates, sortie duration, turn times, etc.) is presumed to be a pre- 
processing activity. 

To produce the relationship between weapon-system availability and fund- 
ing, this approach considers a number of other factors: 

♦ Indenture. Aircraft repair involves replacing first-indenture components on 
the aircraft as it sits on the flightline. These first-indenture components are 
called line replaceable units (LRUs). LRU repair involves replacing second- 
indenture components in the repair shop; these second-indenture compo- 
nents are called shop replaceable units (SRUs). SRU repair involves replac- 
ing third-indenture items, and so on. The model develops the optimal 
balances between procuring LRU and SRU spares. A spare LRU has a direct 
impact on availability (when a spare LRU is available, the aircraft is opera- 
tional almost immediately), while a spare SRU affects availability only indi- 
rectly (even if an SRU spare is immediately available to repair the LRU, the 
aircraft must wait for the LRU to return from maintenance). 

♦ Essentiality. The model focuses on those items that affect availability and 
cost the most —the "essential" items. These are the high-cost, high- 
indenture items (e.g., reparable LRUs and reparable SRUs, the items neces- 
sary for the weapon system to operate). 

♦ Cannibalization. The ability to consolidate LRU shortages ("holes") onto a 
single aircraft greatly improves aircraft availability without increasing pro- 
curement costs. For instance, if one aircraft is missing item A and another is 
missing item B, maintenance can remove an operational item B from the 
first aircraft and install it on the second, returning that aircraft to service. 
Cannibalization   yields   improved   aircraft   availability   over   the   non- 
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cannibalization case for the same cost. Similarly, SRUs may be cannibalized 
during LRU repair. The disadvantage of cannibalization for the mainte- 
nance system is that maintenance actions are increased. 

♦ Flexible scenarios. The model can deal with many different operating scenar- 
ios and even with changes during the course of the scenario. Operating 
tempo may be steady state or dynamic; repair and resupply may be sus- 
pended for a period; maintenance philosophy (e.g., to cannibalize or not) 
may change. 

♦ Multi-echelon supply structure. In some cases, the supply system is 
multi-echelon — inventory is stored at several operating bases and also at a 
central supply point or depot. Depot inventory is available to all bases but 
takes a shipping time to arrive. Base stocks are available immediately to sat- 
isfy on-site demands but are not intended to satisfy demands at other loca- 
tions. (Such lateral supply is possible, but typically performed on an ad hoc 
basis, and it may not be cost-effective. A multi-echelon stockage policy tries 
to minimize the need for such transfers.) The model allocates stock opti- 
mally between the bases and the depot to maximize availability. 

♦ Component stock considerations. The model accepts user-specified spares 
decisions to handle situations in which assets are already in the inventory or 
on order from the contractor. 

1.1  THE METHODOLOGY 

The basic model methodology consists of three steps: 

♦ The first step involves characterizing the probability distribution of the 
number of items in various stages of the resupply process (or "pipe- 
line") — unserviceables in repair at bases or depot and service- 
ables/unserviceables in transit. The relationship between these quantities 
and the number and location of spares in the system determines the prob- 
ability of a backorder. 

♦ The second step is to relate that item information to weapon-system per- 
formance; specifically, to determine the expected number of item backor- 
ders, the expected number of aircraft NMCS, and several other weapon- 
system-oriented measures of supply performance. 

♦ The third step is to produce the availability-versus-cost curve and the asso- 
ciated optimal spares mix for a specified availability or budget target. The 
model uses a marginal analysis technique that determines the best mixes of 
spares for a wide range of targets. 

Figure 1-2 displays this three-step process and the possible options within it. 
In the first step, the model develops item information on the basis of the user's 
specification of steady-state or dynamic flying hours.   In the second step, the 
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model uses the item information, from the chosen Step 1 option, to calculate the 
aircraft availability. (The model uses either of two different methods to calculate 
availability, depending upon whether or not supply policy permits the possibil- 
ity of cannibalization of LRUs between aircraft.) The third step then uses the 
appropriate marginal analysis technique (depending upon the cannibalization 
policy) to calculate the optimal spares mix. 

Step 2. Availability calculation 

^■SKII 
J&. ^. :■-.■...! s 

Step 3. Optimization! 

^#1 

Figure 1-2. 
Basic Model Methodology 

Chapter 2 of this report is an overview of the entire three-step process for 
steady-state conditions without cannibalization. Chapter 2's purpose is to pre- 
sent the entire process simply before moving to the more complex extensions. 
Chapter 3 extends the presentation to describe the method for computing item 
information (e.g., the probability distribution of the number of units being 
repaired or shipped) for a dynamic flying program. Chapter 4 presents the 
method for estimating availability and performing the optimization with canni- 
balization for both dynamic and steady-state flying programs. Chapter 5 moves 
from algorithms to examples and describes how model results vary depending 
upon input options. Finally, Chapter 6 describes a version of the model to per- 
form a special case of spares procurement — initial provisioning. 
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1.2  BENEFITS OF THE WEAPON-SYSTEM APPROACH 

The advantages of the weapon-system approach are dramatic when com- 
pared to the traditional item approach, which typically uses individual item 
measures to determine how many spares of the item were required. A represen- 
tative example of this approach is sparing to a "probability of sufficiency", i.e., 
procure enough spares of the item so that the probability of demand exceeding 
supply is at least some specified value, say 95 percent. We compared the two ap- 
proaches using F-16C aircraft data from the United States Air Force (USAF). The 
results show (see Table 1-1) that, for the same costs incurred under the item ap- 
proach, the weapon-system approach increased aircraft availability by 30 per- 
cent. Alternatively, for the same availability, using the weapon-system approach 
provided a 40 percent budget savings over the item approach. 

Table 1-1. 
Item vs. Weapon-System Approach 
(USAF F-16C Aircraft Reparable Database) 

Performance measure Item approach 

Weapon-system approach 

Minimizing 
cost 

Maximizing 
availability 

Availability 

Cost ($ millions) 

54% 

$14.5 

54% 

$8.6 

84% 

$14.5 

Although the improvements in aircraft availability yielded by using the 
weapon-system approach are significant, it is interesting to note that, on an item- 
by-item basis, the actual change in spares levels is usually small. Figure 1-3 
illustrates this point. For a given budget, it compares the difference — in spares 
for LRUs — between the two approaches. Specifically, it subtracts the spares 
level generated by using the item approach from the level generated by using 
the weapon-system approach to produce the spares difference. Note that, from 
the savings generated by reducing a dozen components by one each (those with 
the negative change shown in Figure 1-3), spares levels for over 300 LRUs were 
increased between 1 and 6 units over the level generated by using the item 
approach. (Those dozen LRUs, incidentally, were among the most expensive 
items but were not the 12 most expensive items.) 
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Positive change 

No change 

Negative     ^f 
change 

50 99 148 197 246 

LRU (LRU #1, #2,. 
295 344 393 

Figure 1-3. 
How the Weapon-System Approach Affects LRU Spares Quantity 

We also estimated the benefits of implementing the ASM for the USAF. 
Before adopting the ASM, the USAF developed war reserve kits based on a sim- 
plified system approach. We estimated that some $200 million were saved when 
the USAF adopted the ASM in 1989. Table 1-2 shows the savings for some repre- 
sentative squadrons. 

Table 1-2. 
Typical Kit Savings with ASM Introduction 

Aircraft type 
(24-aircraft squadron) 

Cost 
($ millions) 

Aircraft available 
on day 7 

F-16C 

Old kit 16.4 21.7 

ASM kit 13.3 22.4 

F-15C 

Old kit 14.2 20.0 

ASM kit 12.8 20.4 
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2.0 Basic Weapon-System-Oriented 
Inventory Systems 

This chapter is an introduction to modern weapon-system-oriented inven- 
tory system theory. We introduce the standard terminology (in bold text) and 
describe in a simple form the logic and methods used in the ASM. We start at 
the simplest possible level, describing the interaction between the inventory sys- 
tem and the items it stocks. In the chapters that follow, we build on this founda- 
tion, treating more complex situations, until we have covered many of the 
standard inventory problems and have discussed how the ASM treats them. We 
present information in a three-step manner: first developing the basic building 
blocks — the item inventory measures — then addressing the translation of item 
information into aircraft availability, and finally discussing marginal analysis 
optimization, which develops the best spares mix on the basis of a spares 
benefit-to-cost ratio. 

2.1  OVERVIEW 

The purpose of inventory is to meet needs as they arise. Typical, everyday, 
inventory decisions are usually made on the basis of intuition or considerations 
of convenience — carrying no spare tire in your car is too risky, carrying two is 
wasteful, carrying one is just right. We do not normally have to resort to com- 
puter models to master inventory decisions such as these. But larger, more com- 
plex systems with larger budgets entail more difficult choices. This is especially 
true in the case of the aircraft reparable spares we are considering. These com- 
ponents are expensive, some over $1 million a unit. Many are specialized and 
not available in the commercial marketplace. Multi-year procurement lead-times 
are common. And the penalty for shortage is a multimiUion dollar weapon sys- 
tem forced to sit idle. Decisions as to the best inventory in such an environment 
should be explicitly based on cost-effectiveness considerations and are best made 
using mathematical, statistical models. 

The goal of an inventory system is to sustain the operation of an end 
item — the machinery supported by the spare parts in the system. We are inter- 
ested here primarily in military aircraft, but application of these concepts to 
other types of weapon systems or major end items is straightforward. As aircraft 
are flown they break, and maintenance crews repairing them order spares from 
the supply system. If this system is performing poorly, it will not be able to sup- 
ply the needed parts, and many aircraft will be NMCS — that is, grounded for 
need of a part.1   A healthy supply system will allow few NMCS aircraft.   The 

aircraft may also be grounded for want of maintenance — not mission-capable- 
maintenance (NMCM). Most of this NMCM category results from routine or scheduled 
maintenance time or from remove-and-replace time for failed components and is not 
affected by spares inventory. 
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true measure of supply performance is the ability of the supply system to pro- 
duce mission-capable aircraft (or other end items). Thus a measure such as air- 
craft availability (the percentage of aircraft not NMCS)2 is a good gauge of 
supply system performance. Certainly, maximizing aircraft availability is the 
proper goal of the supply system. 

Supply system performance has been traditionally measured from the sys- 
tem's internal viewpoint, often by fill rate — the percentage of orders filled 
immediately from stock on hand (OH) (as distinguished from those that are 
backordered because the supply system is out of stock). One weakness of using 
fill rate as a measure is that it does not consider backorder duration. Clearly it 
may make sense to accept a few limited-duration backorder incidents if doing so 
will prevent the occurrence of rare but lengthy ones. But fill rate is insensitive to 
this tradeoff. Nor does fill rate capture information about the complexity of the 
aircraft being supported. All else being equal, more complex aircraft require a 
higher component fill rate to reach a given availability than do simpler aircraft. 
We will see later that availability is defined as a product of probabilities — the 
probability that the aircraft is not missing its first component, times the probabil- 
ity that the aircraft is not missing its second component, and so on. An aircraft 
with more components has more factors in the product, and since each probabil- 
ity is less than 1.0, the product will tend to be smaller. 

Thus using a fill rate criterion, or a backorder criterion alone, for that matter, 
leads to a bias in favor of the less complex aircraft types. Using a backorder cri- 
terion is more defensible if properly done (e.g., in terms of backorders per air- 
craft). As we will show, availability can be viewed as a measure that goes a step 
beyond backorders, and there is a close relationship between availability and 
backorders per aircraft. While a high fill rate can be evidence of a healthy sup- 
ply system, it is not directly related to that system's impact on the ultimate 
customer — the aircraft. In the difficult cost-effectiveness choices that military 
logistics planners must make, the difference between fill rate and aircraft avail- 
ability is critical. 

Our goal is to describe how to model an inventory system in terms of air- 
craft availability. We will begin with a simple system and progress toward a 
complex multi-echelon, multi-indenture system. The first step toward comput- 
ing availability is computing item backorder statistics, which we discuss in Sec- 
tion 2.2. 

2.2  BASE SUPPLY AND ITEM BACKORDERS 

Consider the supply of a single item at an operating base. From time to time 
a customer (normally an aircraft mechanic) will arrive at base supply and ask for 

2 The USAF defines NMCS as aircraft grounded for supply only, and defines a sepa- 
rate category for aircraft grounded for want of both maintenance and supply — NMCB. 
Our NMCS includes all aircraft grounded for spares, thus embracing the USAF's 
NMCS plus NMCB. The USAF refers to our NMCS as TNMCS (total not mission- 
capable — supply). 
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a unit of the item. If base supply has the item in stock, it fills the customer's 
order; if not, the request is backordered and the customer must wait until a unit 
becomes available. 

Suppose that the base is operating in a steady state, typical of peacetime 
operations. While flying hours and sorties may not be identical from day to day, 
there are no great changes as would be seen in a wartime or contingency deploy- 
ment. Then the arrival of demands can be described by a stationary random 
(stochastic) process. Frequently a Poisson process is used to describe this 
demand activity, though a negative binomial characterization — which embod- 
ies more variability — seems more descriptive of USAF activity. At any rate, for 
a stationary Poisson process, if the expected number of demands per day is rep- 
resented by X, the expected number of demands in a time period, T, is XT. For a 
Poisson process, the probability that exactly n demands will occur in T days is 

p(«) = £f££l [Eq. 2-1] 
n\ 

In this chapter, "Poisson process" means stationary Poisson process. Chapter 3 
treats nonstationary processes. 

Suppose there is no base repair capability and that, instead, base supply is 
supported by a higher echelon (a wholesale supplier — the depot). With each 
failure, the base ships the unserviceable unit back to the depot while simultane- 
ously ordering a replacement. The resupply time — how long the base must 
wait for the unit to arrive — is critical to the base's ability to support its custom- 
ers and to the calculation of how many spare units it should stock. 

For now we suppose that the depot always has adequate stock, so that any 
order received from a base is always filled and never backordered. Then the 
base's resupply time is just the time for the depot to process the order and ship it 
to the base, the order and ship time (OST). We assume that OST is constant; 
variable resupply times are considered in Chapter 3. 

If base supply orders a unit from the depot every time a demand occurs, 
there will be a stream of units flowing from the depot to the base, an example of 
a pipeline. This particular pipeline is the order and ship pipeline (OSpipe). 
Since the number of units in this pipeline at any time, t, is simply the number of 
demands between time t - OST and time t, Equation 2-1 tells us that the number 
of units in the pipeline has a Poisson probability distribution with mean X x OST. 
The number of items in the order and ship pipeline is a random variable, 
OSpipeRV. We will denote the mean of this pipeline by OSpipe. Because the 
number of items in the order and ship pipeline is a Poisson random variable, its 
distribution is completely determined by this mean. 

Pipeline probability distributions are important because once we can 
describe the pipeline's behavior, we can measure how well base supply is doing 
its job. For example, the fill rate can be characterized as the probability that base 
supply has a unit on hand at a random point in time. To compute this rate, we 
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need only know the probability distribution of the number of units in the pipe- 
line and the base's inventory, as we will see. 

Before we can do this, however, we need to explain what we mean by the 
base's inventory of an item. Not every unit "owned" by base supply is sitting on 
the shelf ready for issue. Base supply might own six units, but five might be cur- 
rently in the order and ship pipeline (leaving only one on the shelf). In fact, if 
eight are in that pipeline, base supply would have none on the shelf and two 
backordered demands waiting to be filled. 

The total number of units owned by base supply (including any units in 
resupply pipelines) is called the base's inventory position, or spares level, s. The 
inventory position is defined as the number on hand (OH), plus the number due 
in (DI) (i.e., in a pipeline), minus the number due out (DO) (i.e., backorders 
owed to customers). Thus 

s = OH + DI-DO. [Eq.2-2] 

Often the term backorder (BO) is used instead of due out (DO). 

We will assume that the base operates under an (s -1, s) inventory policy, 
which dictates that when a demand lowers the inventory from s to s -1 (which is 
the reorder point), it triggers an action that immediately raises the inventory 
position back to s. Less expensive consumable items — filters, belts, nuts and 
bolts, etc. — are often managed under the more general (r, Q) inventory policy. 
Under an (r, Q) inventory policy, the inventory position is allowed to fall until it 
hits r (the reorder point), at which time the order quantity, Q, is ordered from 
the wholesaler to bring the inventory position up. With an (s -1, s) inventory 
policy, the inventory position is always equal to s, and we refer to the inventory 
position or spares level as the constant s. 

Under our (s -1, s) assumption, we see that in the previous example, the 
number in the pipeline (DI), the number on the shelf (OH), and the number of 
backorders (DO) can vary, but the inventory position stays fixed at 6. For exam- 
ple, if 5 are DI and the base gets a demand, it is filled with the last OH unit, 
dropping the base's inventory position to 5 (0 + 5 - 0). But base supply 
immediately orders another unit from the depot, bringing the inventory position 
back to 6 (0 + 6 - 0). If another demand arrives, it cannot be filled, causing a 
backorder (DO), again lowering the inventory position to 5 (0 + 6 -1) — but once 
again, an order to wholesale immediately restores the inventory position to 
6(0 + 7-1). 

Nor does the inventory position change when an order arrives from whole- 
sale (i.e., emerges from the order and ship pipeline). We left the example above 
with 1 due out, and s = 0 + 7-l = 6. When an order arrives, the number in the 
pipeline changes from 7 to 6, but the number on hand rises to 1, so 
s = l + 6-l = 6. Base supply immediately fills the backordered demand, and 
s = 0 + 6-0 = 6 still. 
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Knowing the inventory position and the probability distribution of the num- 
ber of units, x, in the pipeline, we can compute several widely used measures of 
supply performance. When x is less than s, there are units on hand (OH = s-x). 
When x is greater than s, there are backorders (BO = x - s). Thus the fill rate is 
just the probability that x < s: 

s-l 

fillrate =  X p(x), [Eq. 2-3] 
x=0 

where p(x) is the probability of x units in the pipeline. 

However, as we explained earlier, fill rate is only a mediocre measure of 
military supply effectiveness. A better measure — one that moves us closer to 
computing aircraft availability — is the mean or expected number of backorders 
(EBO). Since BO = x - s for x greater than s, 

EBO = X (x - s)p(x). [Eq. 2-4] 

Another commonly used measure is the probability of no backorders (also 
known as the ready rate or confidence level) as an indication of supply effec- 
tiveness. Confidence level is given by 

confidence level = X/?(*)• [Eq. 2-5] 
x=0 

The confidence level for s spares equals the probability of s or fewer units in 
resupply, which is just the cumulative distribution function CDF(s). Figure 2-1 
shows the confidence level as a function of the number of spares for a compo- 
nent whose expected pipeline equals four. The chart shows the probability dis- 
tribution function, PDF(x), and the cumulative distribution function, CDF(x), of 
the random variable x, the number of units in resupply. [Note: CDF(x) = 
CDF(x - 1) + PDF(x).] In Figure 2-1, a confidence level of 95 percent requires 
seven spares. 
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Figure 2-1 
Confidence Level: Poisson Distribution 

2.2.1   Demand Forecasting 

The mean daily demand, A,, is a critical model input. In accordance with the 
USAF policy in effect when the ASM was developed, A, is estimated as the prod- 
uct of the failure factor (FF)3 — the historical demands per flying hour — and the 
total daily flying-hour program (FHP). Recent LMI research has corroborated 
the widely held belief that flying hours are not a very good indicator of 
demands. Using sorties per day as an indicator is typically better overall, 
though flying hours do have some predictive value [Sherbrooke, 1996].4 Other 
program units are more appropriate for other classes of components, (e.g., pro- 
jected rounds fired for gun parts). 

Judicious preprocessing can be used to replace flying hours with more 
appropriate programs to obtain the best estimate of mean daily demand. 

2.2.2   Base Repair 

Suppose that the base, instead of always having to order another unit from 
the depot, can resupply itself by fixing the broken part turned in by mainte- 
nance. The broken carcass is inducted into base repair, where it is either fixed 
or declared not reparable this station (NRTS). If the part is NRTS, the base 
orders a unit from the depot and sends the carcass back to the depot for repair. 

3 Failure factor is sometimes referred to as the total organizational and intermediate 
demand rate (TOIMDR) in Air Force supply information systems. 

4 Sources are listed alphabetically by author's last name in the bibliography. 
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The base now has a base repair pipeline (BRpipe) in addition to the order 
and ship pipeline. We denote the number of units in the pipeline, a random vari- 
able, by BRpipeRV, and the pipeline mean by BRpipe. If we know the NRTS 
rate (the percentage of demands that are NRTS, resulting in demands on the 
depot) and the base repair time (BRT), then we can calculate the probability dis- 
tributions for the number of items in the base repair and order and ship pipe- 
lines and incorporate them into the backorder calculations. As with OST, we 
assume that BRT is constant. 

We may think of each demand on the base as having a probability NRTS of 
resulting in a demand on the depot and a probability 1 - NRTS of resulting in a 
demand on base repair. Since we are assuming that the original demand process 
is Poisson, we can use the splitting theorem for such processes [Feller, Vol. 1] to 
conclude that demands on base repair and demands on the depot are independ- 
ent Poisson processes with mean daily demand rates (l-NRTS)xX and 
NRTS x X, respectively. Using Equation 2-1, as we did for the order and ship 
pipeline earlier, we see that the number of items in the base repair pipeline and 
the number of items in the order and ship pipeline are Poisson random variables 
with means given by Equations 2-6 and 2-7, respectively. 

BRpipe = X x (1 - NRTS) x BRT. [Eq. 2-6] 

OSpipe = kx NRTS x OST. [Eq. 2-7] 

Since the demand processes on base repair and on the depot are independ- 
ent [Parzen], it follows that the number of items in the base repair pipeline and 
the number of items in the order and ship pipeline are independent random 
variables. 

Because the numbers of items in the two pipelines are independent Poisson 
random variables, the number of items in the total base resupply pipeline is a 
Poisson random variable with mean equal to sum of the means of the two pipe- 
lines (this follows from convolving the two pipeline distributions). Thus the 
mean number of items in the total base resupply pipeline is 

Bpipe = Xx [NRTS x OST + (1 - NRTS) x BRT]. [Eq. 2-8] 

Since the total number of units in the base resupply pipeline has a Poisson 
probability distribution, that distribution is completely determined by its mean, 
Bpipe. Therefore we can compute the probability p(x) that there are x units in 
the total base resupply pipeline for any x, and, by substituting those probabilities 
into Equation 2-4, we can compute the expected backorders at the base as a func- 
tion of the number of spares in the base stock level s. Knowing each item's 
expected backorders as a function of its stock level is the first step in computing 
aircraft availability as a function of stock level. 
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2.2.3   The Effects of Depot Stock 

So far we have assumed that the depot could always satisfy demands with 
stock on hand; in effect, we assumed unlimited serviceable depot stock. We now 
assume that depot stock is finite, that the depot may repair items, and that each 
item's depot repair time is constant. Here, "depot repair time" includes a retro- 
grade time to ship an item from the base to the depot. This section examines the 
effect of these new assumptions on the total base resupply pipeline. We con- 
tinue to focus on a single item. 

Depot stock fluctuates as does base stock except that the depot's customers 
are bases instead of mechanics. When a base orders a part, either the order is 
filled or the item is backordered, depending on whether the depot has a service- 
able unit on hand. The base turns in a broken carcass, which goes into depot 
repair. There is now a depot repair pipeline as well as a base repair pipeline. 
We denote the number of units in that pipeline by DRpipeRV and the pipeline 
mean by DRpipe. We assume for now that no items are condemned (i.e., that the 
system is conservative). 

Assume now that we have N bases and that the item's NRTS rate and order 
and ship time are uniform across bases. We assume that the depot follows an 
(s -1, s) inventory policy, as do the bases. Suppose the demand on base b is a 
Poisson process with mean Xb, and the demands on the bases are mutually inde- 
pendent. 

Then base b's demand on the depot is a Poisson process with mean 
Xb x NRTS, as we saw in section 2.2.2, and the demands of the bases on the depot 
are mutually independent. Therefore the total demand on the depot is Poisson 

with mean A,„ = £ Xb x NRTS. Letting DRT be the constant depot repair time, 

and using Equation 2-1, we see that DRpipeRV is Poisson-distributed with mean 
XoDRT. We can now compute the depot expected backorders (DEBO) using 
Equation 2-4, interpreting s as the depot stock level, x as the number of items in 
the depot repair pipeline, and p(x) as the probability that there are x units in the 
depot repair pipeline. We will use DBORV to denote the number of depot back- 
orders, a random variable not usually Poisson distributed. 

Now consider a particular base, base ;'. We will compute the probability dis- 
tribution of the number of items in base ;'s resupply pipeline; we denote the 
number in that pipeline by BpipeRVj and its mean by Bpipef Let BRpipeRVj and 
OSpipeRVj be the number of units in base j's base repair and order and ship pipe- 
lines, respectively; let BRpipe. and OSpipej be the means of these pipelines. Let 
DBORV be the number of backorders at the depot representing due ins to base / 
and DEBO be the mean number of these due ins. 
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Since a unit due in to base / is either in base repair, in transit from the depot, 
or backordered at the depot, we see that the number of units in base j's resupply 
pipeline is just 

BpipeRVj = BRpipeRVj + OSpipeRV, + DBORVt. [Eq. 2-9] 

Because the mean of a sum of random variables is just the sum of their means, 
the mean number of units in the total base resupply pipeline is 

Bpipet = BRpipet + OSpipe, + DEBOj. [Eq. 2-10] 

We assume that the mean number of backorders at the depot owed to each base 
is in proportion to that base's fraction of total demand;5 that is, 

DEBOj = ^- DEBO. [Eq. 2-11] 

In the current version of the model, we assume that Xj = X for all;', so that we 
have 

Bpipej = BRpipej + OSpipe^ + DJ^°. [Eq. 2-12] 

At this point, we use one of several approximations (the distribution of 
BpipeRV: is not usually Poisson) to compute the probability distribution for the 
base resupply pipeline for a single base, depending on the user's choice of the 
variance-to-mean ratio option. The default ASM option uses a constant 
variance-to-mean ratio of 1 to approximate the probability distribution of each 
base's resupply pipeline by a Poisson distribution with mean Bpipe^; for other 
options, we approximate the probability distribution using the variance of the 
single base resupply pipeline as well as its mean. We discuss the effects of these 
options in Section 2.2.4 and in Chapter 3. 

We next substitute the probability distribution of the base resupply pipeline 
for p(x) in Equation 2-4 to compute the single base expected backorders as a 
function of both the base and depot stock levels (recall that DEBO in Equation 
2-12, and thus p(x) in Equation 2-4, depends on the depot stock level). 

For each number of spares, the model finds the allocation of that number of 
spares across the depot and the N bases that gives the lowest number of base 
expected backorders; it does this by exhaustively trying all of the combinations 
of depot and base spares that sum to the given number of spares. The expected 
backorders for the allocation of each number of spares across the depot and the 
bases is stored and later used in the availability optimization described in Sec- 
tion 2.3.2. 

' See Chapter 3 for further discussion. 
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The ASM can also allow for condemnations (i.e., some carcasses may not be 
reparable). For most expensive reparables, the fraction of demands that are con- 
demned, ConPCT, is small and in many contexts may be ignored. For a steady- 
state formulation, we may assume an (s -1, s) procurement policy to replace con- 
demnations, though the USAF actually uses a periodic review system, typically 
initiating procurement actions only once a year. In the (s - 1, s) formulation, the 
depot pipeline gains another segment, and the mean number of units in the 
depot resupply pipeline is then expressed as 

DRpipe =l0x [ConPCT x PUT + (NRTS - ConPCT) x DRT],        [Eq. 2-13] 

where PLT is the procurement lead-time. Using this new mean for the depot 
resupply pipeline, we compute the probability distribution for the number of 
units in that pipeline and expected depot backorders as before; the computation 
of expected backorders at a single base is unchanged as well. 

2.2.4   Variance 

Thus far, we have considered Poisson processes only. Actual demands can 
be more erratic than a Poisson process. We may also want to consider uncer- 
tainty about the demand rates caused by the inherent difficulty in forecasting. 
In either case, we must use a probability distribution that has more variance 
than a Poisson distribution. The practical choice for computer-based models is 
the negative binomial distribution. While the Poisson is a single-parameter dis- 
tribution whose variance always equals its mean, the negative binomial distribu- 
tion may have a variance larger than the mean. With a negative binomial 
distribution, Equation 2-1 for the probability of n demands in a time interval of 
length T is replaced by 

a»i-£ -Trf»- — 
*"> =" l Q!( m F '■ [E*2-141 

"'■r{-T) 

where XT is the mean, Q is the variance-to-mean ratio (VMR), P = l-Q, and T is 
the gamma function. 

In the case of a constant VMR > 1, the ASM uses Equation 2-14 to describe 
an item's demand distribution in a time interval T. The number of units in each 
pipeline segment, except for depot backorders,6 is described by negative bino- 
mial distributions with means as calculated previously and specified VMR. The 
number of units in each pipeline segment are treated as independent random 

6 Even if the underlying demand process is Poisson, the number of depot backorders 
is not Poisson distributed unless the depot spares level is zero. In that case, the number 
of depot backorders equals the number of units in the depot repair pipeline. If the depot 
spares level is s > 0, then the probability distribution of depot backorders is equal to the 
tail of the (Poisson) probability distribution of the depot repair pipeline, translated by s, 
since the probability of x depot backorders is the probability ofx + s units in depot repair. 
We discuss this further in Chapter 3. 
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variables, so that the mean and variance of the total base resupply pipeline are 
the respective sums of the means and variances of the pipeline segments. We 
then use this mean and variance as parameters of a negative binomial distribu- 
tion and use that distribution to approximate the probability distribution of the 
number of units in the total base resupply pipeline. 

The ASM may optionally use the approach of Vari-METRIC [Slay]. In this 
case, the demand process is treated as Poisson but with an uncertain mean with 
a gamma distribution. This leads to a negative binomial distribution for 
demands in a time interval. The individual pipeline segments are not independ- 
ent, since the gamma prior distribution for the demand on the base affects each 
of the pipelines. The Vari-METRIC option explicitly considers pipeline correla- 
tion in computing the pipeline variances and models the effect of depot spares 
on the variance of the total base resupply pipeline. We discuss this option fur- 
ther in Chapter 3. 

The fact that the negative binomial provides a two-parameter family of dis- 
tributions allows the approximation of a wide range of distributions (by estimat- 
ing their means and variances). 

Figure 2-2 shows various demand distributions7 with a mean of 4, but VMRs 
of 0.6,1, and 3. The number of spares required to obtain a 95 percent confidence 
level equals 6, 7, and 10, respectively. In other words, when all else is equal, 
more spares are required by items with greater demand uncertainty (larger 
VMRs). The VMR is usually set on the basis of a forecasting standard or in 
accordance with an empirically derived formula. 
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Figure 2-2 
Cumulative Distribution function of Demand; Average Demand Equals 4 

7 We have discussed the Poisson distribution (VMR=1) and the negative binomial dis- 
tribution (VMR>1); a demand distribution with a VMR less than one can be modeled 
with a binomial distribution. The current version of the model does not handle this case, 
which rarely occurs. 
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2.3  CALCULATING AVAILABILITY AND SPARES MIXES 

In this section, we start with the item-oriented measures of pipeline and 
backorders (expected value and probability distribution) just developed and 
then, by considering their impact on the aircraft, develop our performance 
measure — aircraft availability. Once we have a performance measure, we can 
then rank each spare on the basis of a benefit-to-cost ratio and develop an opti- 
mal spares mix. 

2.3.1   Calculating Availability 

In this section, we discuss how to use the item backorder distribution we 
have derived to estimate aircraft availability. First we discuss the estimation of 
availability assuming no cannibalization. Discussion of availability when there 
is cannibalization is discussed in Chapters 3 and 4. 

We assume for now that all the components of the aircraft are LRUs. Thus 
they are removed directly from the aircraft upon failure, and a spare is needed to 
return the aircraft to operational status. SRUs must also be considered because 
their shortages may delay LRU repairs, extend effective resupply times, and 
increase LRU backorders. Rather than complicating this stage of the exposition, 
however, we defer discussion of SRUs to Chapters 3 and 4. 

If a part on an aircraft breaks and supply is out of stock for that part, then 
the part is backordered. This backorder causes a hole on the aircraft, and the 
plane is NMCS. Since aircraft availability is the percentage of planes not NMCS, 
computing aircraft availability involves calculating the number of backorders (or 
holes on the aircraft) and how many planes those backorders make NMCS (how 
many different planes have holes). 

If each aircraft had only one part on it, the formula for aircraft availability 
would be simple. Each backorder grounds one aircraft, so the number of NMCS 
aircraft equals the number of backorders. If we observe a number of backorders 
at a specific time, then observed aircraft availability is given by 

observed availability = 1 - = 1 NA~C ' ^' 2~^ 

where NAC is the number of aircraft in the fleet. Thus if there were 2 backorders 
and 10 aircraft in the fleet, the availability would be 0.8, or 80 percent. 

The expected availability, in which we are usually interested, is obtained by 
applying the expectation operator in Equation 2-15, yielding 

.,,.,.,       -     EBO    -    EjNMCS) rFn?ifi1 availability = 1 - j^ = 1 NAC    • IM- 2-16J 

We can interpret availability as the probability that a randomly selected air- 
craft is not NMCS. 
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The extension to multiple components is straightforward if we assume inde- 
pendence of the backorder process across components. Let EBO, be the expected 
backorder total for LRU /, with a given spares level. Because backorders of dif- 
ferent types of components are independent, the probability that a randomly 
selected aircraft is not NMCS for any LRU /, is the product, over all the LRUs, of 
the probabilities that the aircraft is not NMCS for each one. Thus 

availability = Tl f 1 - J^X [Eq 2-17] 

2.3.1.1 QUANTITY PER APPLICATION 

Some components are installed in the aircraft in pairs, triples, etc. For exam- 
ple, many aircraft have more than one engine. To account for this, we let QPA, 
be the quantity per application and let Tl, be the total installed for part I. Then 
(Th = NAC x QPAi) is the number of possible locations for a hole. Note that TI, 
plays the role that the number of aircraft played in Equations 2-15 through 2-17, 
where we could have at most one hole for a given component per aircraft. Thus 
the expected availability is 

f        FRO \u   ' 
availability = IT  1 - ^^p j      . [Eq. 2-18] 

We could have modeled availability with a more complicated formula that 
took into account the fact that the first backorder for item / could occur in any of 
Tl, slots, the second in any of Tl, - 1 slots, etc.8 However, since the availability 
targets we typically use require LRU backorders to be small, the chance of a 
given slot being assigned more than one backorder can be ignored. Moreover, 
correcting for this possibility would add tedious combinatorial arithmetic to the 
model. 

2.3.1.2 APPLICATION PERCENTAGE 

Now consider the case where a component is applied to only part of an air- 
craft fleet [the application percentage (AP),9 expressed as a fraction, is less than 
1.0]. Given that an aircraft does not have component /, the probability that it is 
not NMCS for component / is 1.0 — such an aircraft cannot be grounded for lack 
of that component. The probability that an aircraft randomly selected from those 

(      EBO N\QJM' 
with component I is not NMCS for component Z is   1 =—-        , where Tl, = 

NAC x QPAi x APh The probability that an aircraft chosen at random has com- 
ponent Z is AP, and the probability that it does not have component Z is 1 - AP,. 

8 For a more precise treatment, see Gaver. 
9 In typical applications, we project forward to a point where the spares we decided to 

buy have been delivered, and characterize aircraft and configuration then. Thus the term 
future application percentage (FAP) is often used. 
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We assume that the presence or absence of components / and k are inde- 
pendent for I * k. While this is not always true in practice, we have found this a 
reasonable approximation. Let Al be the probability that a randomly selected air- 
craft is not NMCS for component /; let X = 1 if that aircraft is not NMCS for com- 
ponent / and X = 0 otherwise; let Y = 1 if that aircraft has component / and Y = 0 
if not. Then the probability that a randomly chosen aircraft is not NMCS for 
component /, A}, is 

Pr(X = l) = Pr(X=llY = 0)Pr(Y = 0) + Pr(X = llY = l)Pr(Y=l) 
(     EBOAQFA' [Eq.2-19] 

= lx{l-APl) + [l-^~L)      xAP,. 

From the independence of backorders for different components and of the pres- 
ence of distinct components, the availability of a randomly chosen aircraft based 
on all components is 

availability = FLAi -Yl (1-AP,) + AP,\1 
EBO^QFA' 

Th 
[Eq. 2-20] 

Note that considering these more detailed data elements requires 
straightforward changes to several computations. In particular, Th = 
NAC x QPA, x AP, and component Z's demand rate A,, = FHP x QPAt 

xAP, x FFi, where FHP is the total fleet flying hours per day, and FF„ the failure 
factor, is the expected number of failures per flying hour for component I. 

2.3.2   Spares Mix Optimization 

Given spares levels for each component on an aircraft, we now can compute 
the expected availability for the fleet and the contribution of each component to 
that availability. The final step is to determine the best spares mix. For that step 
we employ a marginal analysis technique that ranks additional spares of each 
item on the basis of their contribution to weapon-system availability per unit 
cost. Buying from this ranked list in order, until funds are exhausted, attains the 
maximum availability possible for a given resource level. 

Suppose we have an initial spares level N, for each LRU / = 1, 2,. . . L and a 
corresponding total EBO(Z, N,) that is the minimum expected base backorders 
achieved by an "optimal" allocation of the N, spares among the depot and bases. 
Then the expected availability for the fleet is given by 

A=UA,(Nl), [Eq.2-21] 

where A,(N,) is the expected item availability for component I with N, spares as 
in Equation 2-20 — A/N,) is the probability that a randomly selected aircraft is 
not missing component /. 
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Suppose we add another unit of component;' to our inventory. Then the 
expected number of backorders for component; is reduced from EBO(j, Nj) to 
EBO(j, N, + 1), and the new availability is given by 

A' = 

= Ax 

UMN,) 

A,(N,) 

Thus 

A' _A,(Nj+l) 

A        AjiNf) 
[Eq. 2-23] 

Similarly, in the general case, with any existing spares mix {n,} and resulting 
availability A, increasing the spares level of component;' from «. to n;. + 1 yields a 
new availability A', where 

Ai = A^+i)^ {    2_24] 

A A,(n,) 

Note that the improvement in availability depends only on component / — the 
availability function is separable. 

Thus we can define, for every component / and every integer n, greater than 
the initial spares level, an "improvement factor" — the increase in availability 
that results from increasing the level of component / from n, -1 to n,; namely, 

A (n ) 
I(ni) =      ,        ..- • We can thus form an array for each component /, consisting 

Ai [Hi — 1) 
of EBOQ, n), A,(n), and I{n) for n = n, + 1, n, + 2, . . . until EBO(l, n) is effectively 
zero.   We can add to this array the marginal benefit per dollar of adding each 
additional spare.   We call this the sort value of the nth spare of component 
Z, V(l, n), and its exact form is given by 

V(l/n) = MlMä/ [Eq.2.25] 
*-( 

V(l, n) = lnAf(n)-mAi(n-l) [£q ^ 
Ci 

The introduction of the natural logarithm may be surprising. In 
Appendix A, we discuss in detail the optimization of separable functions with 
marginal analysis and apply that technique in several contexts occurring in the 
ASM. In the typical marginal analysis approach, the separable multi-variable 
objective function is expressed as a sum of single variable functions. In this case, 
the objective function is additively separable, as opposed to the multiplicatively 
separable availability function in Equation 2-22. The use of the natural loga- 
rithm converts the availability function into a form suitable for the marginal 
analysis machinery. 
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We can then sort all of the spares that are candidates for procurement in 
descending order of V(l, n). With N, representing the initial asset level of each 
component, the starting availability with no procurement is 

A = n At (N,). [Eq. 2-27] 

If j is the component with the highest sort value, the first procurement 
action should be to increase the spares level of component / from N;. to N; + 1. 
The resulting availability, A', can be calculated as 

A' = A x exp [C; x V(j, N, + 1)] [Eq. 2-28] 

as we see below: 

A x exp [Cj x V(j, Nj)] = A x exp C, x    VK) ^ - 

= AxI(j,Nj + \) 

= A'. 

[Eq. 2-29] 

Similarly, as we add spares, going from, say, a level of n -1 to n for compo- 
nent;', the new availability, A', can be expressed in terms of the old availability, 
A, the sort value, and the item cost by 

A' = Ax exp [Cj x V(j, n)]. [Eq. 2-30] 

As we add spares, we track accumulating costs and the resulting fleet avail- 
ability. The list of spares added is the shopping list. The availabilities and costs 
arising from each added spare produce a curve, as shown in Figure 2-3. The 
mathematics of marginal analysis described in Appendix A ensures that buying 
from this list until our funds are exhausted provides the maximum availability. 
Alternatively, if we have a desired target availability, we can buy down the list 
until that availability is reached and know that we have a minimum-cost solu- 
tion. The curve provides macro-level summary information to planners for 
budget formulation and allocation. 
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Cost vs. availability curve 

Shopping list 

IBäfläräS Unit Added Total Availability 
\ Cost aircraft/ cost rate 

Item (S) S10K ($) (%) 

6th A 1,600 0.388 101,600 66.67 

11th B 2,300 0.352 103,900 66.69 

2ndC 10,400 0.312 114,300 66.74 

12th B 2,300 0.283 116,600 66.76 

1stD 13,800 0.154 130,400 66.78 

7th A 1,600 0.144 132,000 66.79 

Figure 2-3. 
Generating the Availability Curve 

The next chapter examines the expected backorder computation under 
dynamic conditions; in Chapter 4, we further discuss optimizing the spares mix, 
allowing for cannibalization. 
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3.0 Backorders Under Dynamic 
Conditions 

This chapter has several sections. Section 3.1 discusses what we mean by 
"dynamic conditions/' tells why we need to consider them, and contrasts them 
with those assumed by the steady-state model in Chapter 2. The steady-state 
backorder computation described in that chapter should be regarded as a special 
case of the more general case presented here (and one easier to understand); it is 
not necessary to employ two distinct models for the steady-state and dynamic 
cases. Sections 3.2 and 3.3 explain the assumptions and mathematics we use to 
handle the dynamic case and the reasons why the estimation of backorder statis- 
tics is the goal of this chapter. In Section 3.4 we introduce a simple dynamic case 
by allowing the flying program (which we assume drives the demand process) 
to vary, but we continue to assume constant resupply times. Further sections 
relax the assumption of constant resupply times, and discuss other generaliza- 
tions, such as suspended resupply and SRU backorders. 

3.1 DYNAMIC CONDITIONS 

In Chapter 2, we considered steady-state conditions; that is, we supposed 
that flying hours or sorties, which we assume to be the drivers of an item's 
demand process, were constant over time and that the parameters characterizing 
the inventory systems' response to demands (OSTs, repair times, etc.) were con- 
stant as well. Our method of computing an item's expected backorders, the cru- 
cial first step in estimating aircraft availability, depended on the steady-state 
assumption. 

In this chapter, the steady-state backorder calculations described in 
Chapter 2 will be generalized in order to handle dynamic conditions — that is, 
situations in which the flying program, and hence the demand process, changes 
over time. (With the steady-state assumption, demand varied from day to day, 
being random, but the underlying process generating that demand did not.) We 
allow the inventory system parameters characterizing the response of that sys- 
tem to demands (e.g., OSTs, repair times, and NRTS rates) to change as well. 
These dynamic conditions require dynamic backorder calculations that explic- 
itly consider changes in the demand generation process and in the time lags that 
occur as spares move through the various resupply pipelines.1 In Chapter 4, we 
discuss the computation of availability and an economically efficient spares mix 
under more general conditions than those of Chapter 2. 

One situation that leads us to consider dynamic conditions is planning for 
wartime, when the use of aircraft (i.e., the flying hours, sorties, or other 

1 For another treatment, see Isaacson et al. 
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measures of activity) changes rapidly from day to day, and thus so does the com- 
ponent demand process. In the transition from peace to war, resupply times 
may shorten or lengthen; resupply may even be suspended. Dynamic conditions 
may also accompany the introduction of a new aircraft or a force drawdown fol- 
lowing a war (increasing or decreasing flying programs, respectively). 

assumes A typical application of the model — a useful one for the USAF - 
a period of steady-state conditions followed by a period of dynamic conditions. 
That scenario portrays the less strenuous flying hours of peacetime followed by 
the surge in activity of a conflict. Figure 3-1 displays a typical flying-hour profile 
for such a case. The profile represents the total number of flying hours per day 
for the entire aircraft squadron. Our time period convention is that the steady- 
state period goes from a "negative" day (far enough back to reach steady-state 
conditions as we have described them) to day zero, while the dynamic period 
starts on day 1 and ends as much as 99 days later. All days preceding day zero 
have the same (peacetime) flying hours as day zero, but flying hours for days 
after day zero may vary. 

Flying hours 
per day 

-*- 
Peace         , Surge 

I I                        »■" 

600 

500 

400 

300 

200 

100 

n I      I      I I           !           I i i   
-6-4-2 0 2 4 6 8 10        12        14 

t day of scenario 

Figure 3-1. 
Sample Flying-Hour Profile 

Nothing in our approach requires that the program driving demand be fly- 
ing hours, although that has been the program used in the USAF case; the pro- 
gram driving demand could be sorties, gun firings, or some other program that 
has empirically been shown to have a predictive relationship with the average 
demand rate. 

Under dynamic scenarios, the performance measure is not usually taken to 
be aircraft availability on a single day, as there may be several crucial days on 
which we need to measure supply performance.    Furthermore, because of 
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changes in repair and resupply, the optimal mix of spares (see Chapters 2 and 4) 
may vary with the day on which we seek to maximize aircraft availability. 
Therefore our measure of supply performance is sustainability, which typically 
consists of the aircraft availability measured on two or more days. 

Whatever scenario we are considering, our notion of sustainability still 
requires aircraft availability according to day, and the first step toward comput- 
ing aircraft availability is to obtain the time-dependent probability distribution of 
backorders. 

3.2 NONSTATIONARY DEMAND 

In this section, we briefly review the steady-state mathematical assumptions 
of Chapter 2 and their significance for the aircraft availability computation 
described there. We then contrast those assumptions with the ones we use to 
compute availability under dynamic conditions. 

3.2.1 The Demand Process 

In Chapter 2 we assumed that an item's demand on base supply could be 
reasonably approximated by a stationary (strict-sense stationary) Poisson proc- 
ess; that is, we assumed that the probability of k demands in any time period of 

(XT)k 

length T was given by  ———e~lT, where A, was the long-term average demand 

rate. The steady-state assumption was reflected in the fact that the probability of 
any given number of demands in a time interval depended only on the length of 
the interval. The assumption of a Poisson probability distribution for the num- 
ber of demands in an interval resulted in less variance than is seen in most USAF 
demand data. However, it allowed us to use the simple result about the splitting 
of a stationary Poisson process [Feller, Vol. 1] to conclude that the base resupply 
pipelines were independent Poisson processes in their own right. 

In this chapter, we assume that the demand on base supply can be approxi- 
mated by a nonstationary Poisson process (the probability of a given number of 
demands in a time interval depends on both the length and on the location of the 
time interval). 

In detail, let N(t) = the number of demands in the time interval [0, t]. We 
say that N(t) is a nonstationary (or nonhomogeneous) Poisson process if the fol- 
lowing conditions hold: 

♦ N(0) = 0. 

♦ If Jj and I2 are non-overlapping time intervals, and N1 and N2, respectively, 
are the number of demands occurring in those time intervals, then Nt and N2 
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are independent random variables (a process satisfying this condition is said 
to have independent increments). 

♦     There is a function X(t) such that the probability distribution for the number 
of  demands  in  any   time  interval   (tv   t2)   is  Poisson  with  parameter 

A(i2) - A(ij), where A(t) = j'Q X(s)ds. 

The function X(t) is called the intensity of the process and may be interpreted 
as follows: the probability of a single demand in a short time interval (t, t + At) 

is "k(t)At + £{t), where ^ -> 0 as At -» 0. For a physical interpretation, think of 

intensity at a point in time as measuring the likelihood of a demand occurring in 
a short interval containing that time; the larger the intensity is, the greater is the 
likelihood of a demand. The function A(t) is known as the mean value function of 
the process and may be thought of as the mean of the number of demands in the 
interval (0, t). It is straightforward to show that if X(t) = A, for all t, the process is 
simply the stationary Poisson process of Chapter 2. 

The assumption that demand is a nonstationary Poisson process corre- 
sponds to choosing either the model setting of a constant VMR of 1 (this is the 
default and is currently used by the USAF) or the choice of the Vari-METPJC 
option with the shape parameter set to a very large value (low dispersion of the 
gamma prior distribution). The Vari-METRIC option handles the contribution of 
depot backorders to the base resupply pipeline more precisely than the constant 
VMR option and results in a better approximation of the PDF of base backorders. 

Choosing a constant VMR larger than 1 or choosing the Vari-METRIC 
option with a small value for the shape parameter (large dispersion of the 
gamma prior distribution) results in modeling the demand in a time interval 
with a negative binomial distribution. Again, the Vari-METRIC option models 
the depot backorder portion of the base pipeline more precisely. 

3.2.2 Backorder Probability Distributions 

In Chapter 2, the first stage of estimating aircraft availability was to com- 
pute each item's expected backorders at the base, for which we needed the prob- 
ability distribution of base backorders. Since we were assuming that the base 
ordered stock from the depot according to an (s -1, s) inventory policy, we had 
BO = x - s for x > s, where BO was the number of base backorders, x was the 
number in the base resupply pipeline, s was the constant base inventory posi- 
tion, and both x and BO were random variables. From this equation, we saw 
that to compute the probability distribution for backorders, it sufficed to com- 
pute the distribution for the number in the base resupply pipeline x. 

We then approximated the distribution of x in one of two ways. One was to 
approximate it with a Poisson distribution with mean equal to the sum of the 
means of the three components of the base resupply pipeline, which simplified 
the problem by allowing us to work with expected values alone, but introduced 
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some error because depot backorders do not usually have a Poisson distribution. 
The other was to use the Vari-METRIC technique, which uses a negative bino- 
mial for approximating the distribution. This introduces considerably less error 
in cases in which we have resupply from a depot with a finite, positive stock 
level [Slay]. 

Under dynamic conditions, we still focus on aircraft availability as our 
measure of supply performance, but — as noted earlier — we are now interested 
in availability on more than one day. We introduce one further complication: 
under dynamic conditions, we allow for a demand at the base to be satisfied by 
using a part from a grounded aircraft (cannibalization) — this is a policy likely to 
be used in war. Availability under cannibalization must be computed from the 
distribution of the number of aircraft NMCS for each item, as we will see in 
Chapter 4, rather than from each item's expected backorders. 

However, both the distribution of the number of aircraft NMCS for an item 
and the item's expected backorders can be computed if we know the distribution 
for base backorders, so — as in the steady-state case — the problem of comput- 
ing availability can be solved if we can compute that distribution (as a function 
of time). As in the steady-state case, we compute this distribution by first com- 
puting the probability distribution for the base resupply pipeline. The process is 
now made somewhat more complicated, since backorders and all components of 
the base resupply pipeline are nonstationary stochastic processes rather than 
ordinary random variables, so that the distributions we compute are time- 
dependent. 

Sections 3.3 through 3.5 describe the dynamic pipeline methodology and 
how the model considers the effects of dynamic resupply times and FHPs. We 
explain how the model handles the transient effects, explicitly considering the 
lag between the actual component failures and the time they are felt in the sup- 
ply system. We present the model algorithms here; for an example, see Appen- 
dix B. 

Since the methodology is complex, we start by describing how to estimate 
pipeline distributions when resupply (repair, shipping, and procurement) times 
do not change over time, but where the demand process does. (The example in 
Appendix B shows flying hours as the driver for the demand process, but again, 
this is not essential.) Next we describe how to estimate pipeline distributions 
when those resupply times do change; we describe how the model handles the 
transition from steady-state to dynamic conditions. Finally, in Section 3.6, we 
present extensions to the calculation of pipeline distributions that address sus- 
pended resupply, SRU pipelines, days of warning, and multiple bases. 
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3.3 BACKORDERS WITH CONSTANT RESUPPLY TIMES 

3.3.1 INTRODUCTION 

To compute availability for time T— say day 30 — the model looks back to 
determine what previous conditions affect day 30. As discussed above, the key 
to availability is backorders, which are determined by the behavior of pipelines. 

In the deterministic case, to compute how much is in a resupply pipeline to- 
day, we need to consider the earliest time that anything now in the pipeline 
could have entered. With constant resupply times, this "earliest time" is just a 
resupply time ago. For instance, to estimate what is in the order and ship pipe- 
line on day 30, we look back an OST (say 10 days) from that day (to the end of 
day 20) and estimate what has failed in that period. A replacement for anything 
that has failed since day 20 could not have arrived from the depot and so is still 
in the pipeline. A replacement for anything that failed on day 20 or earlier has 
been received by the base by day 30 and so is out of the pipeline, unless it was 
backordered (by the depot) as of day 20. 

In the general case, the quantity of items in the pipeline on day 30 is a ran- 
dom variable, so we cannot compute how much is in the pipeline on that day. None- 
theless, focusing on what happened in the period that started a resupply time 
ago is central to our treatment of dynamic pipelines. 

3.3.2 Assumptions and Definitions 

We assume that items fail according to a nonhomogeneous Poisson process 
with intensity X(t) on day t, where the process begins on day zero (there is no 
loss of generality in assuming this). We assume for now that the item is an LRU 
with no SRUs so that we can ignore the contribution of SRU backorders to the 
LRU base repair pipeline and so that there is a simple relationship between fly- 
ing hours and mean failures. We will discuss SRU effects in Section 3.6.2. 

For now, our inventory system consists of a single base and a single depot, 
and the base either repairs a failed item or ships it to the depot.2 We further 
assume that the probability that an item that fails at time t is sent back to the 
depot is NRTS(t), and that BRT and DRT are constant (DRT includes the retro- 
grade time to ship the carcass from base to depot). We assume that the classifi- 
cation of an item either as base reparable or as NRTS is instantaneous and 
coincides with the time that the failure of the LRU results in a demand on base 
supply. We assume, for the moment, that the depot can satisfy all demands 
through repair; i.e., there are no condemnations. 

Denote the base stock level by s, the depot stockage level by s0, and let the 
stockage policy at the base be (s -1, s). We assume that whenever a base orders 

2 We treat multiple bases later in Section 3.6.5 (also see Chapter 2); the assumption of 
a single base and depot may seem a bit artificial, but it simplifies the notation. 
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a part from the depot, the broken carcass is immediately shipped back to the 
depot to be repaired. Thus the depot will repair the returned carcass to replace 
the item issued to the base. 

An item in the base resupply pipeline is either in base repair, in the order 
and ship pipeline, or backordered at the depot (the demand will eventually be 
filled by a serviceable item from depot repair). All of these three components of 
the base resupply pipeline are stochastic processes, and the quantity in any 
resupply pipeline at time T is a random variable. 

Let OST be the constant (for now) order and ship time, and use the follow- 
ing notation for the resupply pipeline random variables: 

BRpipeRVT = number of items in base repair at time T 

OSpipeRVT = number of depot demands in the interval (T - OST, T) 

DBORVT_OST = number of depot backorders existing at time T - OST 

DRpipeRVj = number of items in depot repair pipeline at time T 

BpipeRVT = total number due in to the base at time T 

BORVj = number of base backorders at time T. 

Then 

BpipeRVj = BRpipeRVT + OSpipeRVT + DBORVT.OST; 

BORVj     = BpipeRVj -s,HBpipeRVT > s;or [Eq. 3-1] 

BORVj     = 0,if BpipeRVj < s. 

3.3.3 The Probability Distribution of Base Backorders 

Our goal is to compute the probability distribution function of BORVT, 
which we can compute from that of BpipeRVT (both functions of time.) Through- 
out this section, we continue to assume that the base repair, order and ship, and 
depot repair times are constant. We start by showing that the three random vari- 
ables on the right-hand side of Equation 3-1 are mutually independent. Our 
development follows that of [King, Kruse, Simon]. 

From our assumption that demand was a nonhomogeneous Poisson process 
with intensity X{t), from the definition of NRTS(i), and from the splitting theo- 
rem for nonhomogeneous Poisson processes [Kotkin], we conclude that the 
demands on base repair and the demands on the depot are independent nonho- 
mogeneous Poisson processes with intensities X(£)[l - NRTS(t)] and X(t) NRTS(t), 
respectively. 
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Let X(t) be the number of demands on base repair in the time interval [0, t] 
and Y(u) be the number of demands on the depot in [0, u]. Since the demands on 
the base and demands on the depot are independent stochastic processes, the 
random vectors [X(T), X(T - BRT}] and [Y{T), Y(T - OST), Y(T - OST - DRT)] are 
independent. This follows directly from the definition of independent stochastic 
processes. Since functions of two independent random vectors are independent 
[Papoulis], X(T)-X(T-BRT) is independent of [Y{T)-Y(T-OST), 
Y(T - OST) - Y(T - OST - DRT) - s0]. We know that depot demand is a process 
with independent increments, so Y(T)-Y(T-OST) is independent of 
Y(T-OST)-Y(T-OST-DRT)-s0. Therefore the three random variables 
X(T)-X(T-BRT), Y{T)-Y{T-OST), and Y(T-OST)-Y(T-OST-DRT)-s0 are 
mutually (not just pair-wise) independent. 

Now X(T) - X(T - BRT) is just the number of demands on base repair in the 
time interval (T - BRT, T). Since any unit that entered base repair before T - BRT 
has emerged by T, and any unit that has entered base repair after T - BRT has 
not, X(T) - X(T - BRT) is the number of units in the base repair pipeline at time 
T, BRpipeRVT. Similarly, Y(T) - Y(T-OST) is the number of units in the order 
and ship pipeline at T, OSpipeRVT, and Y(T - OST) - Y(T - OST - DRT) is the 
number of units in the depot repair pipeline at time T-OST, DRpipeRVT_OST. 
The number of depot backorders at T-OST is just DBORVT_OST = 
DRpipeRVT_OST -s0 = Y(T - OST) - Y(T - OST - DRT) - s0. Therefore BRpipeRVT, 
OSpipeRVT, and DBORVT__OST are mutually independent. 

In obtaining the probability distributions of these random variables, we use 
the notation Pr(E) for the probability of an event E. As we observed, demands 
on base repair are a nonhomogeneous Poisson process with intensity 
A,(f)[l - NRTS(t)]. Since BRpipeRVT is the number of demands on base repair in 
[T-BRT, T], BRpipeRVj is a Poisson random variable with mean and variance 
equal to 

0(T)=   T      X(t)[l - NRTS(t)]dt. [Eq.3-2] 
J T-BRT 

(This follows directly from the definition of the mean-value function of a 
nonhomogeneous Poisson process presented earlier in Section 3.2.1.) 

Since demands on the depot are a nonhomogeneous Poisson process with 
intensity A,(t) NRTS(t), and since OSpipeRVT is just the depot demands in 
[T - OST, T], we see that OSpipeRVT is a Poisson random variable with mean and 
variance equal to 

TO = J. T 

T-OST 
X(t)NRTS(t)dt. [Eq. 3-3] 

To obtain the distribution of DBORVT^OST, we need only compute the distri- 
bution of the depot repair pipeline at T-OST, for the probability that 
DBORVT_OST = k is just the probability that DRpipeRVT_osr = s0 + k for k > 0 
(recall that s0 is the constant depot stock level) and the probability that 
DBORVT_OST=0 is Z°°=0Fr(DRpipeRVT<,sT=i). But DRpipeRVT_OST is just the 
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number of depot demands in (T-OST-DRT, T-OST), so by the fact that 
demands on the depot are a nonhomogeneous Poisson process with intensity 
X(t) NRTS(t), we see that DRpipeRVT_0ST is a Poisson random variable with mean 
and variance 

am = f X(t) NRTS(t)dt. Eq. 3-4 v   '    JT-OST-DRT 1 

Therefore the distribution of DBORVT is given by 

Fr(DBORVT = 0) = E;!0 ^^ ; [Eq. 3-5] 

Pr(DBORVT = k) = l   )U    *      / for k > 0. [Eq. 3-6] 
(so + ky. 

We see that the distribution of DBORVT_OST is a spike at zero plus the tail of the 
distribution for the depot repair pipeline. 

Since we can compute the distributions of all of the random variables on the 
right side in Equation 3-1, and since those random variables are independent, we 
could compute the distribution of the base resupply pipeline BpipeRVT by con- 
volving the distributions for the three components of that pipeline. However, 
this convolution is computationally cumbersome. 

Therefore we take a different approach. We recall from Chapter 2 that a 
negative binomial distribution is specified by two parameters, the mean |J, and 
variance O2, and we approximate the base resupply distribution with a negative 
binomial distribution having the same mean and variance. We have already 
found the mean and variance of BRpipeRVT and OSpipeRVT; we can compute the 
mean and variance of the distribution for DBORVT_OST directly from its distribu- 
tion: 

E(DBORVT^OST) = E;, k L7JJ     * [Eq- 3-7] 
(So + K)\ 

E[(DBORVT-OSTy] = Z;, fc2 [Q™°+^; [Eq- 3-8] 

and 

Var(DBORVT.OST) = E[(DBORVT^ST)
2
] - [E(DBORVT-OST)   ■ [Eq. 3-9] 

We also have shown that the three components of the base resupply pipe- 
line at time T are independent random variables. Therefore we have 

E(BpipeRVT) - E(BRpipeRVT) + E(OSpipeRVT) + E(DBORVT.OST)     [Eq. 3-10] 
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and 

Var(BpipeRVT) = Var(BRpipeRVT) + Var(OSpipeRVT) + Var(DBORVT-osT)-    [Eq. 3-11] 

Note that although we have found the mean and variance of the distribution 
of the base resupply pipeline at time T, we do not know the form of that density. 

In the model option of a constant VMR of 1, we approximate the distribu- 
tion of the base resupply pipeline with a Poisson distribution with mean given 
by Equation 3-10. This introduces some error: unless the depot stock level is 
zero, the distribution of depot backorders will not be Poisson, so the distribution 
of the base resupply pipeline cannot be Poisson either. If we use the Vari- 
METRIC option (with gamma prior distribution nearly concentrated at a point, 
so that demand on the base is nonstationary Poisson), then we can get a better 
approximation of the base resupply pipeline distribution since this option 
explicitly handles the variance of depot backorders. 

To approximate the base resupply pipeline distribution with a negative 
binomial density, let 

H(T) = E(BpipeRVT), 

a2(T) = Var(BpipeRVT), 

[Eq. 3-12] 

[Eq. 3-13] 

and 

VMR(T) = 
o2(T) [Eq. 3-14] 

With this notation, our approximation to the distribution of the base resup- 
ply pipeline at time T is given by 

Pr(BpipeRVT = k)=- 
k + 

vm 
VMR(T)-1_ 

fcir n(T) 
VMR(T) - 1 

VMR(T) - 1 
VMR(T) 

-nco 
VMR(T) VMRO)-I t VMR(T) ± 1, 

and 

Fr(BpipeRVT = k) = 
-ncn ncn* 

fc! 
, tor VMR(T) =1, [Eq. 3-15] 

3-10 



where T denotes the gamma function. Finally 

Pr(BORVT = k)= Pr(BpipeRVT = s +k),for k > 0, [Eq. 3-16] 

Pr(BORVT = 0) = ELo ?r(BpipeRVT = k) [Eq. 3-17] 

is the distribution function for base backorders that we were seeking. 

Notice that none of the ideas developed so far in this section depend upon 
the demand intensities being driven by a weapon-system program, such as fly- 
ing hours or sorties. For instance, we could use this method if we were estimat- 
ing the intensity of future demand by using a trend-sensitive forecast based on 
historical demand. After a brief digression to cover computational methods, we 
will focus on the case in which demand is driven by a weapon-system program. 

3.3.4 Computational Methods 

We detour briefly here from the conceptual development to explain how the 
probability distribution for base backorders can be conveniently computed 
— not just as a function of time, but as a function of the stock levels as 
well — using a recursive process. We will frequently refer to the concepts devel- 
oped previously, and in Appendix B we will use this section's results in a 
numerical example. 

In Section 3.3.3, we held the stock levels fixed and focused on finding the 
time-dependent probability distribution of backorders for those levels. Now we 
will fix the time T and allow the stock levels s and s0 to vary. To find item base 
and depot levels to maximize aircraft availability, the ASM evaluates the effect of 
various values of those levels for each item. 

Consider a particular item. Of the three terms in Equation 3-10, only the 
last one depends on the depot stock level s0, and the same is true for 
Equation 3-11. Therefore to compute the change in the base resupply pipeline 
probability distribution due to adding a spare to the item's depot stock level, it 
suffices to compute the change in expected depot backorders and in the variance 
of depot backorders. 

To emphasize the dependence of the mean and variance of depot backorders 
on s0, we will denote their values when the depot stock level is s0 by DEBO(s0, T) 
and VDBO(s0, T), respectively. Let P(k) = Pr(DRpipeRVT = k). When s0 = 0, we 
have 

Pr(DBORVT = k)= Pr(DRpipeRVT = k) = P(k)iork > 0, 

so that 

DEBO(0, T) = E(DRpipeRVT) [Eq. 3-18] 
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and 

VDBO(0, T) = Var(DRpipeRVT). [Eq. 3-19] 

The right-hand sides of Equations 3-18 and 3-19 are known from the work laid 
out in Section 3.3.3 on the distribution function of base backorders. 

We will develop recursion formulas for DEBO(s0, T) and VDBO(s0, T). 

For any s0, we have 

DEBO(s0rT) = £;=1 kP(s0 + k) 
P(s0 + 1) + 2P(s0 + 2) + 3P(s0 + 3) + ... 

P(s0 + 1) +   P(s0 + 2) +   P(s0 + 3) + ... 
P(s0 + 2) +   P(s0 + 3) + ... 

P(s0 + 3) + ... 

[Eq. 3-20] 

= Sr=i Pr (DRpipeRVT >s0 + k). [Eq. 3-21] 

[We have gone from summing the triangular array above by columns (in 
Equation 3-20) to summing by rows (in Equation 3-21).] 

Therefore we see that 

DEBO(s0 +1, T) - DEBO(s0, T) 

= Zr=i ^(DRpipeRVj > s0+ fc +1)-2£i ^(DRpipe RVT >s0 + k) 

= 2t" 2 ^r(DRpipeRVT >s0 + k)-T^=1 Pr(DRpipeRVT >s0 + k)        [Eq 3.22] 

=  -Pr (DRpipeRVj > s0 + 1) 

\-rk:0p(k)_ 

That is, the reduction in expected backorders resulting from a change in 

stock level from s0 to s0 + 1 is   1 -Z?=0
p(*) I- Note that as the stock level s0 

grows, the reduction in expected backorders resulting from an additional spare 
tends monotonically to zero (this is the "diminishing return" of adding spares). 
Because the decrease in expected backorders for each additional spare is a mono- 
tonically decreasing function of the number of spares, the number of expected 
backorders itself must be a decreasing, convex function of the number of spares. 

By combining the recursion formula in Equation 3-22 with Equation 3-18, 
we can compute expected depot backorders for each stock level s0. 
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Next we show how to compute the variance of depot backorders. We will 
obtain the change in the variance of depot backorders resulting from an addi- 
tional spare by computing the change in the second moment of depot backor- 
ders. Denote that second moment by DE2BO(s0, T). We have 

DE2BO(s0, T) = E{[DBORVT(s0,T>]2} = 2;=1 k
2P(s0 + k), 

so that 

DE2BO(s0 + 1,1)-DE2BO(s0, T) = X;=1 k
2P(s0 + k + l) -^ k2P(s0 + k) 

= 'Ll2(k-l)2P(s0+k)-Jdll k
2P (s„+fc) 

i;=2(-2fc+l)P(s„ + fc) -P(s„ + 1) 

-2T°k^kP{s0 + k) +Tl_2P(s0+k) -2P(s0+l) + P(so + l) 

= -2'Ll,kP(s0 + k) + Zl.PiSo+k) 

= -2DEBO(s0,T) + [l-X*°=0P(fc) 

But by Equation 3-22, the last term in brackets is just 
DEBO(s0, T) - DEBO(s0 + 1, T), 

so that 

DE2BO(s0 + l,T)- DE2BO(s0, T) = -2DEBO(s0/ T) + DEBO(s0, T) - DEBO(s0 +1, T) 

or 

DE2BO(s0 + 1,T) = DE2BO(s0, T) - DEBO(s0, T) - DEBO(s0 + 1, T). [Eq. 3-23] 

From Equations 3-18 and 3-19, from the relation 

DE2BO(0, T) = VDBO(0, T) + DEBO(0, T)2 [Eq. 3-24] 

(which follows from the definition of variance) and the recursion formulas in 
Equations 3-22 and 3-23, we can compute the second moment for each depot 
stock level s0. We can then compute the variance for any particular depot stock 
level s0 as 

VDBO(s0, T) = DE2BO(s0, T) - DEBO(s0/ T)2. [Eq. 3-25] 

Once we have computed the mean and variance of depot backorders for a 
particular value of s0, we use Equations 3-10 and 3-11 to estimate the mean and 
variance of the probability density for the base resupply pipeline. We then pro- 
ceed to approximate the PDF of the base resupply pipeline as we did in Section 
3.3.3, using the first part of Equation 3-15. 

From the probability distribution of the base resupply pipeline and Equa- 
tions 3-16 and 3-17, we can compute the distribution for base backorders as a 
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function of T, s0, and s.   As noted at the beginning of this chapter, doing so 
allows us to compute our item's contribution to aircraft availability. 

If the item is one for which cannibalization is not allowed, we need only 
compute expected base backorders for each combination of T, s0, and s, rather 
than the entire distribution function for base backorders, as we see from Equa- 
tion 2-20. In this case there is a shortcut, based on the following observation: the 
technique developed for expected depot backorders can also be applied to com- 
pute the change in the expected base backorders due to adding an additional 
spare at the base (nothing in the mathematics depends on the fact that we were 
considering the depot resupply pipeline and depot backorders). 

Since we know that expected base backorders with s = 0 is just the expected 
base resupply pipeline for any given depot stock level s0, we can use the tech- 
nique we have just developed to compute the change in expected base backor- 
ders as we increment the base stock level s. Therefore we can determine 
expected base backorders as a function of T, s0, and s. 

3.4 FLYING-HOUR-DRIVEN DEMANDS AND CONSTANT 

RESUPPLY TIMES 

We now return to our conceptual development, starting with a brief discus- 
sion of how to apply the ideas of Section 3.3.3 to the case where demands are 
driven by flying hours. In Appendix B, we give a numerical example to illus- 
trate the computation of time-dependent pipeline means and variances under a 
scenario typical of those to which the model is applied. As explained above, 
these means and variances are then used to compute the parameters of a time- 
dependent negative binomial distribution used to approximate the probability 
distribution of the base resupply pipeline. 

Consider an LRU that has no subassemblies, and assume constant resupply 
times. Let FF(t) and FHP(t), respectively, be the item's mean failures per flying 
hour (of that type of aircraft) on day t. Let QPA and FAP be the quantity per air- 
craft and future application percentage, as defined in Chapter 2. 

Assume that the item's demands are described by a nonhomogeneous Pois- 
son process with intensity on day t given by 

M.t) = FF(t) x FHP(t) x QPA x FAP [Eq. 3-26] 

and that the NRTS rate for the item, NRTS(t), is also constant throughout any 
given day. 

Denote the time-dependent means and variances of the pipelines at time T 
by 

BRpipe(T)  = E(BRpipeRVT); VBRpipe(T)   = Var(BRpipeRVT); 
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OSpipe(T) = E(OSpipeRVT); VOSpipe(T) = Var{OSpipeRVT); 

DRpipe(T) = E(DRpipeRVT); VDRpipe(T) = Var{DRpipeRVT); 

DEBO(T)   = E(DBORVT); VDBO(T) = Var(DRpipeRVT); 

Bpipe(T)     = E(BpipeRVT); VBpipe(T) = Var(BpipeRVT). 

We begin by computing the mean of the base repair pipeline, BRpipe(T), for 
an item on day T of the scenario. From Equation 3-2, we have 

BRpipe(T) = *(T) = fT BRT X(t)[l - NRTS(t)]dt. 

Since both the intensity of the demand process and the NRTS rate are step 
functions that are constant throughout any given day, the above integral reduces 
to the sum 

BRpipe(T) = Xl^BRT+1 Mk)[l - NRTS(k)]. [Eq 3-27] 

Because the base repair pipeline was a nonhomogeneous Poisson process, 
we have VBRpipe(T) = BRpipe(T). 

By analogous reasoning, Equation 3-3 for the mean (and variance) of the 
OSpipe on day T reduces to 

OSpipe(T) = V(T) = ZlT_oST+1 Uk) NRTS(k). [Eq. 3-28] 

To obtain the mean and variance of DBORVT_OST, we proceed as we did for 
the other two pipelines. Equation 3-4 for the mean and variance of the DRpipe 
at time T - OST reduces to 

DRpipe(T - OST) = Q(T) = Xl^Zsr-o^i ^fc) NRTS(k). [Eq. 3-29] 

From this, we compute DEBO(T-OST) and VDBO(T-OST), using Equations 
3-7 and 3-9, respectively. 

Recasting Equations 3-10 and 3-11 for the mean and variance of the base 
resupply pipeline in our current notation, we have 

Bpipe(T) = BRpipe(T) + OSpipe(T) + DBO(T - OST) [Eq. 3-30] 

and 

VBpipe(T) = VBRpipe(T) + VOSpipe(T) + VDBO(T - OST). [Eq. 3-31] 

As explained earlier, we then approximate the PDF of the base resupply 
pipeline at time T by a negative binomial distribution with mean Bpipe(T) and 
variance VBpipe(T), or by a Poisson distribution with mean Bpipe(T), depending 
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on the VMR option selected in the model. (See Equations 3-12 through 3-15.) 
Appendix B contains a detailed numerical example illustrating these computa- 
tions. 

3.5 BACKORDERS UNDER VARYING DETERMINISTIC 

RESUPPLY TIMES 

Now suppose we have an LRU with resupply times (base repair, order and 
ship, or depot repair) that change between peace and war. What does this 
mean? What happens to the items already in resupply at the start of the war? 
And how does the variability of those resupply times affect our computation of 
base backorder statistics? 

As in the case of constant resupply times, the first step in computing backor- 
der statistics is to focus on computing the means and variances of the compo- 
nents of the base resupply pipeline. The key to understanding the behavior of 
resupply pipelines is the retrospective point of view used earlier: What is in a 
pipeline today depends on the rate at which items entered the pipeline in the 
past and on the (now variable) resupply time. 

Consider once more the example with deterministic pipelines that we used 
at the beginning of Section 3.3. In that example, the order and ship time was a 
constant 10 days. To determine the number of items that were in the pipeline on 
day T = 30, we needed to count all of the items that entered the pipeline between 
day T - OST = 20 and day 30, since only items entering the pipeline during this 
period could still be in the pipeline. 

If we now suppose that the OST is variable, we can no longer compute what 
is in the pipeline on day T simply by looking back an order and ship time, since 
there is no single order and ship time that will do. We will show that there is an 
earliest time that an item could have entered the order and ship pipeline without 
having emerged by time T. The difference between this induction time, as we 
will call it, and the emergence time will play the role that the order and ship 
time played in the case of constant resupply times. 

For the rest of Section 3.5, resupply pipelines are again stochastic processes 
(by this, we mean that the number of units in any resupply pipeline at a time t is 
a random variable whose PDF depends on t; we do not mean that the resupply 
time is random). We continue to assume that the demand process is a nonhomo- 
geneous Poisson process. 

3.5.1 Resupply Processes with Deterministic Variable 
Resupply Times 

We will assume for now that all resupply processes have deterministic 
resupply times and are "first in, first out" (FIFO).   By "deterministic resupply 
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times," we mean that all simultaneous demands for a particular component with 
identical sources of resupply have the same resupply time. In other words, all 
demands on base supply for a particular component occurring on the same day 
will have the same known resupply time. A resupply process is FIFO if the fact 
that item one emerges from resupply before item two implies that item one 
entered the resupply process before item two did. 

Note that if a resupply process is FIFO, the number of units in resupply at a 
time t is still a random variable; it is only the resupply times that are determinis- 
tic. Because resupply times can vary from one day to another, "deterministic 
resupply time" does not necessarily mean "constant." 

Since we are assuming that our resupply times are deterministic, the time at 
which an item emerges from resupply uniquely defines the time when it entered. 
Therefore for a resupply process with a deterministic resupply time, we can 
define the function 

I(t)   = induction time (time at which the resupply action is initiated) 
for an item that emerges from resupply at time t. 

We see that a deterministic process is FIFO if and only if 

I(tx) < I(t2) for all times tXl t2 with tx < t2. 

The induction time function splits history into two segments. At any time t, 
all items inducted before I(t) will have emerged from resupply; all items 
inducted after I(t) will not have. 

The resupply time is the difference between t and I(t). Since the model looks 
back in time to estimate availability, it computes resupply time on the basis of 
when something is inducted — when it enters the resupply process. An item that 
emerges at time t has resupply time 

R(t) = t - I(t). [Eq. 3-32] 

We will see how the model computes I(t) later, when we discuss the way the 
model handles the behavior of resupply processes under the peace-to-war transi- 
tion. 

3.5.2 The Probability Distribution of Base Backorders 
with Varying Resupply Times 

As in the case of constant resupply times, we must compute the probability 
distribution of base backorders. Thus we must first compute the means and 
variances of the segments of the base resupply pipeline. Our development is 
almost identical to that in the constant resupply time case; the only difference is 
that constant resupply times in the equations are replaced by resupply times that 
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are functions of the emergence time. We will present only those parts of the ear- 
lier development that have changed. 

We denote the time-dependent resupply times by 

OST(T) = order and ship time for an item emerging at time T;3 

BRT(T) = base repair time for an item emerging at time T; 

DRT(T) = depot repair time for an item emerging at time T. 

With this notation, we have the following analog of Equation 3-1: 

BpipeRVj = OSpipeRVT + BRpipeRVT + DEBOT-OST(T). [Eq. 3-33] 

That is, the base resupply pipeline at time T (a random variable) is the sum of the 
order and ship pipeline at time T, the base repair pipeline at time T, and the 
depot backorders an order and ship time previous to T. We denote that time by 
OST(T) to show its dependence on the emergence time. We see that T - OST(T) 
is playing the role of I(t) in Equation 3-32. 

As we saw earlier with Equation 3-1, the three terms on the right-hand side 
of Equation 3-33 are independent random variables. The only changes required 
in our earlier argument are that we view the order and ship pipeline at time T as 
being the number of demands on the depot in the time interval [T - OST(T), T], 
the base repair pipeline as the number of demands on the base in the time inter- 
val [T-BRT(T), T], and the depot repair pipeline as the number of demands on 
the depot in the time interval [T - OST(T) - DRT(T - OST), T - OST(T)]. Because 
we are still assuming that demand on the base is a nonhomogeneous Poisson 
process, the argument for the independence of the three random variables is 
unchanged. The nonhomogeneous Poisson assumption also tells us that we 
have the analogs of Equations 3-2,3-3, and 3-4: 

Om = fT        X(t)\l - NRTS(t)]dt; [Eq. 3-34] 

Y(T) =   r X(t) NRTS (t)dt; [Eq. 3-35] 
V    ' JT-OST(T) 

Q(T) =  I"7"057™ Mt) NRTS(t)dt; [Eq. 3-36] 

and that O(T), *P(T), and Q(T), respectively, are both the means and variances of 
the base repair pipeline at time T, the order and ship pipeline at time T, and the 
depot repair pipeline at time T. 

Knowing that the three components of the base resupply pipeline at time T 
are independent allows us to conclude that we can simply add the means and 

'Here OST(T) is a pure order and ship time containing no backorder delay. 
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variances of those components to obtain the mean and variance of the base 
resupply pipeline at time T, as in Equations 3-10 and 3-11. 

The rest of our process for computing the distributions of the base resupply 
pipeline and of base backorders is unchanged from the case of constant resupply 
times (Equations 3-12 through 3-17), so we will not reproduce it here. 

3.5.3 Flying-Hour-Driven Demands and Variable Resupply Times 

As we did in Section 3.4, we now focus on the case where demands are 
driven by flying hours (Equation 3-26), and where flying hours and the NRTS 
rate are step functions that change only at the beginning of each day. We now 
assume that resupply times are also step functions that change only at the begin- 
ning of the day. 

With these assumptions, Equations 3-34 through 3-36 for the means and 
variances of the base resupply pipeline components reduce from integrals to 
sums, as they did in Equations 3-27 through 3-29: 

BRpipe(T) = ZLT-BKTCTHI WH1 - NRTS(*)]; [Eq. 3-37] 

OSpipe(T) = ¥(T) = XLr-osrm+i W) NRTS(k); [Eq. 3-38] 

DRpipe[T - OST(T)] = Q(T) = S^cTi-D^r-osrmRi W) NRTS(k). [Eq. 3-39] 

To use these equations, we must compute BRT(T), OST(T), and 
DRT[T - OST(T)], which further specify resupply behavior. We assume that in 
peace, the resupply times have one constant value, and that after the war has 
been going on for some time, they have another constant value. During the first 
few days of the war, which we will call the transition period, we assume that 
resupply times are sufficiently well approximated by linear interpolation 
between their peacetime and wartime values so that the FIFO property of base 
repair is maintained. 

For example, consider the base repair pipeline. Suppose that the war begins 
at T = 0, and that we have 

BRT(T) = BRTP/ for T < 0; 

BRT(T) = BRTW, for T > BRTW. 

Then we assume that 

BRT(T) = BRTP - T x {BRTp
n ~_BRTw\ for 0 < T < BRTW, [Eq. 3-40] 

where BRT(T) is rounded to the nearest integer. 
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To illustrate, suppose that the peacetime BRT is 7 days and the wartime BRT 
is 3 days. Table 3-1 displays the model's BRT by day of the scenario. 

Table 3-1. 
Peace-to-War Transitional Base Repair Times by Scenario Day 

Day f -3 -2 -1 0 1 2 3 4 5 6 

BRT(f) 7 

-10 

7 

-9 

7 

-8 

7 

-7 

6 

-5 

4 

-2 

3 

0 

3 

1 

3 

2 

3 

3 

Using Equations 3-37 through 3-40, we can compute the means and vari- 
ances of the components of the base resupply pipeline during the early days of 
the war, when the supply system is in transition. (For other days, we revert to 
the constant-resupply-time case treated earlier in Section 3.4.) Computing the 
probability distribution of base backorders proceeds as in the case of constant 
resupply times. 

3.6 OTHER EXTENSIONS 

For clarity's sake, we have so far simplified some of the hypotheses concern- 
ing the wartime scenario. Now we describe briefly some extensions of our 
theory. They represent straightforward modifications of the standard ASM 
treatment and of the dynamic theory discussed in this report and earlier [King]. 

3.6.1 Suspended Resupply 

In many wartime or contingency situations, repair facilities may not be 
immediately operational after a deployment, or transportation vehicles may be 
dedicated to troop movement and unavailable for spares transport. In such 
cases, repair and resupply are suspended for some length of time. The examples 
so far have assumed that all types of resupply began on day zero (that is, no sus- 
pension of repair or transportation). While we will examine suspension of base 
repair only, the formulas for depot repair suspension and for order and ship sus- 
pension are analogous. 

Suppose base repair is suspended at the start of the war though time ST, i.e., 
repair begins again on day ST + 1. This suspension has two effects, as shown in 
Table 3-2. The first is that no item in repair at the start of the war will finish 
repair until after the suspension is over; that is, the time an item spends in the 
repair pipeline increases by one day for each day of the repair suspension. Dur- 
ing the suspension, BRT(t) is best understood as the time an item has been in the 
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Table 3-2. 
Base Repair Time with Suspension 

Time Base repair time 

f<0 BRT(t) = BRTP 

0<t<ST BRT\f) = BRTp+t 

ST<t<BRTw+ST BRT(t) = (BRTP + ST)-(t-ST)x [(BRTP- BRT W)/BRTW] 

BRTw+ST<t BRJ\t) = BRTW 

pipeline,4 rather than a repair time. The second effect is that items broken in war 
do not go into repair until the suspension is over (i.e., all items broken during 
the suspension go into repair after suspension and come out of repair a BRTW 

later. In between those two times (ST and BRTn + ST), the time required to 
repair an item decreases in the same manner as in the no-suspension peace-to- 
war transition case described earlier [Equation 3-40]. Table 3-3 demonstrates 
that point by comparing a 3-day suspension starting on day 1 with our previous 
example (see Table 3-1) with no suspension. The BRT for peace and war equals 
7 and 3 days, respectively, for both examples. Notice that the suspended case 
repair times decrease by the same rate (days 4, 5, and 6) as the case with no sus- 
pension during days 1,2, and 3. 

Table 3-3. 
Peace-to-War Transitional Base Repair Times 
with Suspension 

Day t -1 0 1 2 3 4 5 6 7 8 

BRT{f) with suspension 

BRT(t) no suspension 

7 

7 

7 

7 

8 

6 

9 

4 

10 

3 

9 

3 

7 

3 

6 

3 

3 

3 

3 

3 

3.6.2 Levels of Indenture 

3.6.2.1 INTRODUCTION 

By "indenture" we mean the relationship of a subassembly (lower inden- 
ture) to its parent assembly (LRU). With this terminology, an LRU is referred to 
as a first-indenture item, since it is installed directly on the aircraft. An SRU is a 
second-indenture or lower-indenture item. Thus "levels of indenture" refers to a 
hierarchical relationship between major assemblies and their subassemblies. 

To this point, we have considered LRUs only. When an LRU has SRUs, base 
repair typically consists of identifying, removing, and replacing a failed SRU. 
The repair of the LRU may be delayed as a result of the time needed to obtain an 

4 Because we are only allowing t to take on integral values in the model, this time in 
the pipeline is approximate for some values of t. 
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SRU either from repair or from resupply. The model must estimate the time the 
LRU spends waiting for resupply of the SRU (which we term SRU delay) and 
the resulting degradation of aircraft availability. This delay can range from zero, 
if the SRU has plenty of spares, to the full resupply time for the SRU, if no spares 
are available. We consider only the effect of the SRU delay on base repair of the 
parent LRU; we assume no SRU delay on depot repair of the parent LRU.5 

In Section 3.6.2, we show how the calculation of the mean and variance of 
the base resupply pipeline for an LRU at a time T changes to include the effect of 
SRU backorders (we must defer part of the explanation until Chapter 4, when we 
discuss cannibalization, since the model assumes that all SRUs are cannibalized 
if feasible). The theory that we have applied so far to derive the distribution of 
LRU backorders can also be used to derive the distribution of SRU backorders. 
However, since SRU failures are not detected until the LRU has undergone fault 
isolation, the failure process for the SRUs effectively lags the flying-hour pro- 
gram by the LRU repair time. The remaining steps in the calculation of the base 
backorder PDF are unchanged from earlier sections. We continue to assume that 
demand at the base is a nonhomogeneous Poisson process for LRUs, and now 
for SRUs as well. At the end of Section 3.6.2, we present a numerical example 
that illustrates the relationship between the time of an SRU failure and its effect 
on LRU repair. 

3.6.2.2 APPROACH 

Consider an LRU with a single SRU and assume constant base repair times. 
(Constant resupply times are not necessary here, but they simplify the notation.) 
Assume further that there is no stock for the SRU, so that we can see the full 
effect of the SRU delay time. Let BRT and BRTLRU, respectively, represent the 
BRTs for a specific SRU and for its LRU parent. BRTLRU can be written as 

BRTLRU = BRTLRUm + BRTLRU^, [Eq. 3-41] 

where 

BRTLRUFrr = fault isolation time for the LRU, and 
BRTLRU,^ = reassembly time for the LRU. 

5 The flow of depot repair is much more complex than that of base repair. In many 
cases, the standard DRT already includes ample allowance for any SRU delay. Fre- 
quently, in fact, a failed SRU is "job-routed," i.e., repaired as part of the repair of its par- 
ent LRU. Job-routing precludes any demand on supply for the SRU, unless the SRU is 
condemned. 
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The sequence of events in the LRU repair process is depicted in Figure 3-2. 
We assume that the reassembly time is negligible in comparison with the fault 
isolation time.6 Then BRTLRU = BRTLRUFIT, approximately. Note from 
Figure 3-2 that SRU repair induction lags behind the corresponding LRU failure 
by the parent BRT. That is, the SRU failures occurred earlier, driven by flying 
hours at that time. However, those SRU failures are not discovered until after 
the LRU goes through a BRT. The SRU has an impact upon availability only at 
the point when the fault in the parent LRU has been isolated, and only if there 
are no SRU spares to repair the LRU. 

♦ BRTLRU 
FIT t ♦ BRTLRU , i 

T 
Fault isolation ♦ SRU delay 

T 

Reassembly 

T 

Figure 3-2. 
LRU/SRU Timeline 

3.6.2.3 THE EFFECT OF SRU BACKORDERS 

We now drop the assumptions of constant resupply times and no SRU stock. 
Denote the BRT for an SRU that emerges from repair at time T by BRT(T), and 
the BRT for the parent LRU that emerges from repair at time T by BRTNHA(T). 
Here, NHA means "next higher assembly." Assume that the SRU failure process 
is a nonhomogeneous Poisson process with intensity a(t) and postulate NRTS 
rate NRTS(t). As with the LRU demand process considered earlier, the splitting 
theorem for nonhomogeneous Poisson processes tells us that the failure process 
for the SRU splits into two nonhomogeneous Poisson processes with intensities 
[1 - NRTS(t)] a(t) and NRTS(t) a(t). The first process is that of SRU demands on 
base repair, while the second is that of SRU demands on the depot. 

6 In fact, the reassembly time need only be nondynamic for the following results to 
apply. SRU failures are delayed by the LRU fault isolation time. However, the impact of 
SRU backorders on LRU backorders is also delayed by the LRU reassembly time. (This is 
exactly analogous to the way the impact of depot backorders on the base is delayed by 
the order and ship time.) Thus the total delay of the effect of SRU backorders is BRTLRU. 
But it is the dynamics of the LRU fault isolation time that has a critical effect on LRU 
backorders. We assume that all of the dynamics of BRTLRU are in the fault isolation time 
and that the reassembly time is constant. 
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The SRU base repair pipeline at time T (a random variable) is the sum of the 
demands on base repair over the interval 

[T-BRT(T),T]. 

Now an SRU demand on base repair at time T arose from a failure that occurred 
at a time BRTNHA(T) ago, since BRTNHA(T) is the fault isolation time required 
to discover that the SRU has failed. Similarly, an SRU demand on base repair at 
time T-BRT(T) arose from a failure at a time BRTNHA[T - BRT(T)] ago. There- 
fore the SRU demands on base repair during the time interval [T - BRT(T), T] 
arose from SRU failures over the interval 

{T - BRT(T) - BRTNHA[T - BRT(T)], T - BRTNHA(T)}. [Eq. 3-42] 

For brevity, let Tx - BRTNHA[T - BRT{T)] and T2 = BRTNHA(T). 

From our assumption that the SRU failure process was nonhomogeneous 
Poisson with intensity a(t) and the above observation about the time-lagged 
relationship between SRU failures and SRU demands on base repair, we see that 
the SRU base repair pipeline at time T is a Poisson random variable with mean 
and variance 

<&(T) =   fT"T2        [1 - NRTS(t)] a(t)dt. [Eq. 3-43] 

The reader may wonder why this is not exactly analogous to the depot pipe- 
line, with SRU failures over the interval 

{T - BRTNHA(T) - BRT[T - BRTNHA(T)], T - BRTNHA(T)}. 

That is, why do we not use the SRU's BRT a BRTNHA ago? The answer is that 
we are assuming that most of the LRU's BRT is fault isolation time. If the situa- 
tion were reversed and most of the LRU's BRT were reassembly time, then these 
pipelines would be analogous to the depot pipelines, where depot repair is fol- 
lowed by order and ship. In that case, the second form of the time interval 
would apply. However, modeling the main portion of BRTNHA as preceding 
the SRU replacement is preferable for two reasons: first, when repair is expe- 
dited, this primarily shortens the scheduling delays, effectively shortening fault 
isolation time; second, fault isolation and removal of the SRU normally takes 
longer than reassembly. 

Turning next to the order and ship pipeline for the SRU, we see that the 
number of items in that pipeline at time T is the number of SRU demands on the 
depot over the time interval [T - OST(T), T\. Reasoning as we did above, an SRU 
demand on the depot at time T arose from an SRU failure at time 
T-BRTNHA(T), while a demand on the depot at time T-OST(T) arose from 
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SRU failures at time T - OST(T) - BRTNHA[T - OST(T)]. Therefore the SRUs in 
the order and ship pipeline at time T arose from SRU failures over the time inter- 
val from 

T - OST(T) - BRTNHA[T - OST(T)] 

to 

T -BRTNHA(T). 

Letting 

T3 = BRTNHA[T - OST(T)], 

we see that the SRU OSpipe at time T is a Poisson random variable with mean 
and variance given by 

TO=CL-T3NRTS(t) a{t)dL [E* 3"44] 

Now consider the SRU depot repair pipeline at time T - OST(T). This deter- 
mines SRU depot backorders at time T. The number of items in the depot repair 
pipeline at time T is the number of SRU depot demands over the time interval 
from T - OST(T) - DRT[T - OST(T}] - BRTNHA{T - OST(T) - DRT[T - OST(T)]} 

to 

T - OST(T) - BRTNHA[T - OST(T>]. 

Let 

T4 = BRTNHA{T-OST(T)-DRT[T - OST(T)]}r 

and 

T5 = BRTNHA[T-OST(T)]; 

then the SRU depot repair pipeline at time T - OST(T) is a Poisson random vari- 
able with mean and variance 

n(T)=l 
T-OST(T)-T5 

NRTS(t)a(t)dt. [Eq. 3-45] 
T-OST(r)-DRr[T-OST(T)]-T4 w      w ± 

We can compute the PDF for SRU depot backorders at time T - OST(T) from 
Equations 3-45, 3-5, and 3-6. Next, Equations 3-10 and 3-11 produce the mean 
and variance of the SRU base resupply pipeline at time T. As we did before, we 
use the Vari-METRIC approximation to compute the distributions of the SRU 
base resupply pipeline and the SRU base backorders at time T. 
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From the distribution of SRU base backorders, we can estimate the mean 
and variance of the awaiting parts (AWP) pipeline for the LRU. We defer an 
explanation of how this is done until Chapter 4, since the model uses the 
assumption that all SRUs are cannibalized in estimating the AWP pipeline mean 
and variance, and cannibalization is explained in Chapter 4. 

The means and variances of the LRU's AWP pipeline are then added to the 
mean and variance, respectively, of the base resupply pipeline for the parent 
LRU at time T; this is an approximation of the SRU effect because SRU 
backorders — and the part of the base resupply pipeline for the parent LRU that 
does not include SRU effects —are not independent processes. Finally, the 
model uses the Vari-METRIC method to estimate the distributions of the new 
base resupply pipeline (including SRU effects) and base backorders. 

As already noted in Sections 3.4 and 3.5, the model assumes that the 
demand process, the NRTS rate, and the resupply times are day-by-day step 
functions: we omit the derivation of the above results for this special case 
because it is so similar to what has been presented before. 

3.6.2.4 EXAMPLE 

Since the derivation just presented is fairly complex, we now give an exam- 
ple illustrating how SRU failures have a time-lagged effect on the parent LRU. 
For simplicity, we assume constant resupply times. 

Figure 3-3 shows the distinction between the time when the SRU fails and 
the time when it is inducted into maintenance. The figure assumes an impact 
point T on day 30 and constant LRU and SRU repair times of 10 and 6 days, 
respectively. Note that any SRU failure occurring on or before day 14 
(30 -10 - 6) has had time to go through the LRU and SRU repair process and so 
does not have an impact on the LRU. The first failure that can have an impact on 
the LRU is one occurring on day 15 (the top horizontal line in Figure 3-3 and the 
left side of Equation 3-42). (If no SRU spares were available, the SRU would still 
be undergoing repair and delaying the LRU.) The latest SRU failure that can 
have an impact on the LRU on day 30 would be one occurring on day 20. After 
that point, any SRU failures are not inducted into maintenance until after day 30 
and so cannot have an impact on availability on day 30. That last point of 
impact is illustrated by the bottom horizontal line of Figure 3-3; it is the right 
side of Equation 3-42. Thus to determine the mean SRU pipeline, the model esti- 
mates mean SRU failures between the two extremes (day 15 and day 20), a 
period whose length equals the SRU repair time of 6 days (see the horizontal bar 
at the bottom of Figure 3-3). 

3-26 



SRU impact SRU BRT 

SRU pipeline 

LRU BRT SRU BRT 

LRU BRT SRU BRT 

LRU BRT 

SRU failures 

SRU BRT 

12 16 20 

I I 

24 28 32 36 

Figure 3-3. 
SRU Pipeline Computation 

3.6.3 Condemnations 

Consider an LRU with no SRUs, an LRU whose demands on the base form a 
nonhomogeneous Poisson process with intensity X,(f). Thus far we have been 
assuming that any item that failed can be repaired, either by the base or by the 
depot; we now drop that assumption. We now interpret NRTS(t) as the prob- 
ability that a demand on the base at time t cannot be repaired by the base, 
including the possibility that it is condemned (either by the base or by the 
depot.)   Let ConPCT(t) be the probability of condemning a failed item at time t. 

There are now three mutually exclusive events that can occur when there is 
a demand on the base at time t: either the item goes to base repair, it goes to 
depot repair, or it is condemned. The probability that the failure leads to a 
demand on base repair is still 1 - NRTS(t), as it was in the no-condemnations 
case. The probability that it leads to a demand on depot repair is now 
NRTS(t) - ConPCT(t), and the probability that it results in a condemnation is 
ConPCT(t). 

An application of the splitting theorem for nonhomogeneous Poisson proc- 
esses [Kotkrn] tells us that these three probabilities split the base demand process 
into three independent nonhomogeneous Poisson processes with intensities 
[1 -NRTS(i)]A#)/ Ut)[NRTS(t) - ConPCT(t)], and X(t)ConPCT(t). The first proc- 
ess is the demands on base repair, the second process is the demands on depot 
repair, and the third process is condemnations (which can be viewed as 
demands for procurement). Since demands on depot repair and condemnations 

3-27 



are independent nonhomogeneous Poisson processes with intensities 
X(t)[NRTS(t) - ConPCT(t)] and X{t)ConPCT{t), respectively, total demands on the 
depot (the sum of these two processes) is still a nonhomogeneous Poisson proc- 
ess with intensity 'k(t)[NRTS(t)]r as it was in the no-condemnations case. 

Because the three processes above are mutually independent, the total depot 
demand process, which is the sum of the latter two, is independent of the 
demands on base repair. 

Since the demand process for base repair is unchanged (from the 
no-condemnations case), and the base repair pipeline at time T is still demands 
on base repair over the time interval [T-BRT(T)r T], the mean and variance of 
the base repair pipeline are still given by Equation 3-34. 

The order and ship pipeline at time T is the total demands on the depot over 
the time interval [T - OST(T), T], and the demand process on the depot is still the 
same as it was in the no-condemnations case, so the mean and variance of the 
pipeline are still given by Equation 3-35. 

The depot repair pipeline at time T - OST is the demands on depot repair 
over the time interval [T - OST(T) - DRT[T - OST(T)], T - OST(T)}. Because the 
depot repair demand process is nonhomogeneous Poisson with intensity 
X(t)[NRTS(t) - ConPCT(t)], we see that the mean and variance of the depot repair 
pipeline at time T - OST(T) are both 

Q(T) =  [T~°ST(T) Ut)[NRTS(t) - ConPCT(t)]dt. [Eq. 3-46] 
v J T-OST(T)-DRT[T-OST(T)] 

The condemnations at the depot at time T - OST(T) are treated as another 
pipeline at the depot.7 Let PLT be the (constant) procurement lead-time for the 
LRU in days, with PLT representing the sum of production, administrative, and 
other processing times. The "condemnation pipeline" at time T - OST(T) is the 
condemnations over the time interval [T - OST(T) - PLI', T-OST(T)]. Because 
condemnations are a nonhomogeneous Poisson process with intensity 
NRTS(t)X(t)ConPCT(t), the mean and variance of the condemnation pipeline at 
time T - OST(T) are both 

eco = j 
T-OST(T) 

X(t)NRTS(t)ConPCT(t)dt. [Eq. 3-47] 
T-OST(T)-PLT 

Since the demands on depot repair and condemnations are independent 
stochastic processes, the depot repair pipeline and the condemnation pipeline at 
time T-OST(T) are independent random variables. Therefore the total depot 
resupply pipeline at time T - OST(T) is a Poisson random variable with mean and 
variance given by Q(T) + G(T). The PDF of depot backorders is computed from 
the PDF of the total depot resupply pipeline in the same way that we derived 
Equations 3-5 and 3-6, with Q(T) + G(T) playing the role that Q(T) played in 
those earlier equations. 

7 As in the steady-state case of Chapter 2, this is an idealization.  Typically, procure- 
ment decisions are made periodically and not with an (s -1, s) discipline. 
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As in the case of constant resupply times and no condemnations, the base 
repair pipeline at time T, the order and ship pipeline at time T, and the depot 
backorders at time T-OST(T) are mutually independent random variables. 
From this point on, the derivation of the PDF for base backorders remains 
unchanged from the derivation in the no-condemnation case. 

If the LRU has SRUs, the probability distribution for SRU depot backorders 
is derived just as it was above for LRUs, and the effect of the SRU backorders on 
the LRU is handled just as it was in the case of no SRU condemnations. 

When demands are driven by flying hours or other program units — and 
flying hours, NRTS rates, and condemnations are day-by-day step functions 
— Equations 3-46 and 3-47 reduce to sums. We omit these, since the transition 
from integrals to sums in this case is analogous to the transitions explained 
earlier in this chapter. 

3.6.4 Days of Warning 

Let Nw equal the number of days of warning before the start of the surge 
conflict.8 We model this situation by shifting the time dependence of the compo- 
nent characteristics by Nw days. For example, if the wartime base repair rate is 
5 days and Na is 3 days, the model interprets the 5-day base repair rate as begin- 
ning on day - 2 (i.e., the last 3 days of peacetime base repairs are performed at 
the wartime rate). The other resupply times, as well as the NRTS and condem- 
nation rates, are treated similarly. However, the flying hours and failure rates 
are not shifted. 

3.6.5 Multiple Bases 

Thus far, to simplify the mathematics, we have assumed that the supply sys- 
tem consists of one base and one depot. We now consider the case where several 
bases are resupplied from a single depot. The ASM assumes that all bases are 
uniform with respect to demand rates, resupply times, NRTS rates, and condem- 
nation rates. Suppose there are N uniform bases, N > 1. 

For base ;' at time T, denote the base repair pipeline by BRpipeRVj(T), the 
base order and ship pipeline by OSpipeRVj(T), depot backorders DI (owed) to 
the base by DBORVj(T), the total base resupply pipeline by BpipeRVj(T), and the 
base backorders by BORVj(T). Our goal is to compute the PDF of BORVj(T). 

We know that base ;'s resupply pipeline at time T is given by 

BpipeRVj(T) = BRpipeRVj(T) + OSpipeRVjiT) + DBORV^T - OST(T)].       [Eq. 3-48] 

3 Here w means warning as opposed to war. 
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As before, the three terms on the right are independent random variables. Thus 
if we know their means and variances, we can sum the means and sum the variances 
to obtain the mean and variance, respectively, of the base resupply pipeline. 

There is no change in the way we compute the mean and variance of the 
base repair and order and ship pipelines from the way we computed them in the 
single-base case; each base has its own base repair and order and ship processes 
(with identical parameters). However, the depot backorder segment requires a 
new treatment because it is not clear how to allocate depot backorders among 
bases. 

We do know how to compute the distribution of total depot back- 
orders — we get this from the distribution of the total depot resupply pipeline, 
as we did in our Section 3.6.3 on condemnations. Although the depot repair and 
condemnation pipelines now involve demands originating at all bases, the base 
of origin is immaterial to the calculation of the total depot resupply pipeline sta- 
tistics. 

We now show how to compute the mean and variance of depot backorders 
owed to base ;'; we will use the following standard notation. When X and Y are 
random variables, we will use P(XlY), E(XIY), and VAR(X\Y), respectively, to 
denote the (conditional) probability distribution of X given Y, the expectation of 
X given Y, and the variance of X given Y. We will use the following two results 
from probability theory [Ross]: 

E(X) = E[E(XlY)], [Eq. 3-49] 

and 

VAR(X) = VAR[E(X\Y)] + E[VAR(X\Y)]. [Eq. 3-50] 

It can be shown under the uniform base assumption that the probability that 
i 

any depot backorder represents an item due in to a particular base is —, and that 

the probabilities that any two successive depot backorders are owed to base; are 
independent. Thus we can view the occurrence of depot backorders as a 
sequence of Bernoulli trials [Feller, Vol. 1], where the probability of success, 

interpreted as the probability that a depot backorder belongs to base ;', is —. This 

is an immediate consequence of a more general result in [Kotkin]; an earlier 
result for stationary demand processes is in [Kruse]. 

Let DBORV(T) be total depot backorders at time T; we know its mean and 
variance. With this notation, we have 

Pi[DBORV,(T) = k\DBORV(T) = n] = 
V*7 *)>-r 
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In other words, the conditional distribution of depot backorders due in to base j 

given n total depot backorders is binomial with parameter —. Since the mean of 

a binomial distribution with parameters n and p is np [Feller, Vol. 1], we have 

ElDBORVjC^lDBORViT) = n] = § = 
DBORVjT) 

N N 

and by Equation 3-49, we obtain 

E[DBORVj(T)] = E{E[DBORVj (T)\DB0RV(T)]} 

= E 
DBORV(T) 

N 

= j-E[DBORV(T)]. 

[Eq. 3-51] 

We have found the mean of the base resupply time for an arbitrary base; we 
now find the variance. Since the variance of a binomial distribution with 
parameters n and p is np(l - p) [Feller, Vol. 1], we see that 

VAR[DBORVj{T)\DBORV{T) = n]  = nx i (l - ^ 

= nN~1 [Eq.3-52] 
N2 

= ^~^DBORV(T). 

Using Equations 3-50,3-51, and 3-52, we obtain 

VAR[DBORVj(T)] 
=   VAR{E[DBORVj(T)\DBORV(T)]} + E{VAR[DBORV (T)\DB0RV(T)]} 

VAR j- DBORV(T) + E N_1 DBORV(T) 
N2 

=  ^ VAR[[DBORV (T) ] + ^i E[[DBORV(r)]. 

[Eq. 3-53] 

Since we have found the mean and variance of depot backorders owed to an 
arbitrary base, we can find the mean and variance of the base resupply pipeline 
at base / [we will, of course, be using the mean and variance of depot backorders 
owed to base ;' at time T-OST(T), rather than at time T]. We then use the Vari- 
METRIC approximation to estimate the distributions of base ;'s resupply pipe- 
line and of its (base) backorders, just as we have done in the single-base case; we 
omit the details. 

3.6.6 Exponential Repair 

The repair times at the base and at the depot as may be treated as random 
rather than deterministic.    An exponential distribution of repair times is a 
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popular assumption because it leads to tractable computations, both in simula- 
tions and in analytical models. Its use does, however, suffer from the drawback 
that it implies that the most probable repair time is zero. Other distributions 
exist (such as a two-sided Laplace distribution9) that are also amenable to com- 
putation but that allow for the most probable repair time to be positive [Craw- 
ford]. 

The model allows only for exponentially distributed repair times. (The order 
and ship process is considerably less variable than would be implied by using an 
exponential distribution for the order and ship time.) Exponential repair is not 
consistent with our earlier FIFO assumption, but we will not need that assump- 
tion in treating random repair times. We will first describe exponential repair 
using the continuous approach and then present the model algorithms used in 
the discrete approach. Then we will expand our algorithms to include exponen- 
tial repair with suspended resupply and with levels of indenture. 

3.6.6.1 CONTINUOUS APPROACH WITH STATIONARY REPAIR TIMES 

We use the dynamic version of Palm's theorem [Crawford, Hillestad and 
Carillo] to compute repair pipeline distributions when the exponentially distrib- 
uted repair times option is selected. Note that no version of Palm's theorem is 
needed in the case of time-varying, deterministic resupply times that we have 
treated thus far; we only require it for random repair times. 

Assume that the demands on repair are a nonhomogeneous Poisson process 
with intensity X(s), that G(s, t) is the probability that an item that fails at time s 
will be repaired by time t, and that RpipeRV(t) is the number of items in a repair 
pipeline at time t. The dynamic Palm's theorem states that RpipeRV(t) is a Poisson 
random variable with mean (and variance) 

t 

a(t) =   J [1-G(s, t)]X(s)ds. [Eq.3-54] 

To apply Palm's theorem to compute the repair pipeline mean and variance, we 
must calculate G(s, t) in the case of a exponential repair time distribution. 

First consider the case where the repair time distribution is the same 
throughout the scenario, and let RTRV be the repair time (a random variable). In 
this case we interpret exponential repair to mean that there is a constant ß such 
that the distribution for the repair time is fit) = ße"p'. Elementary calculus shows 

that the mean repair time is E(RTRV) = |.   We denote the mean repair time 

E(RTRV) by RT. 

9 This distribution is discussed in Sherbrooke, 1992, in the context of leadtime 
demand distributions for consumable items. 
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Now suppose that an item fails at time s. The probability that the item will 
emerge from repair by time t is just 

t-s t 

G(s,t) = Fr(RTRV < t - s) =  J ße^dx = J $e^-*du = 1 - e~w-s\ 
0 s 

so we have 

l-G(s,f) = e-ß(t-s), [Eq.3-55] 

and by Palm's theorem, we have 

E[RpipeRV(t)] = VAR[RpipeRV(t)] = Je-«*> X(s)ds. [Eq. 3-56] 

3.6.6.2 NONSTATIONARY REPAIR TlMES 

Non-stationary repair times mean that the repair times form a stochastic 
process; i.e. the repair time for an item entering repair at time Ms a random vari- 
able RTRV(t) with probability distribution depending on t. 

To treat nonstationary repair times, we use the hazard function of a random 
variable [Parzen]. Let X be a random variable, f be its probability distribution 
function, and F be its cumulative distribution function. The hazard function H 
for X is 

H(x) = /(*) 
l-F(x)' 

[Eq. 3-57] 

The hazard function may be interpreted in terms of conditional probability. 
To see this, note that times s and t with s < t, 

j H(x)dx = j z^rrdx = -ln[l - F(Q] + ln[l - F(s)] = In 
l-F(s) 
1-F(t) 

[Eq. 3-58] 

or 

exp \-JH(x)dx\ = ^5|| = jg|£ = Pr(X > tlx > s). [Eq. 3-59] 

If Xr is the time to repair an item that enters repair at time r<s, then Equation 
3-59 describes the probability that the item has not emerged from repair by time 
t given that it is still in repair at time s. If r = s, Equation 3-59 becomes 

exp | -j H(x)dx I = Pr(Xs > t) = 1 - G(s, t), [Eq. 3-60] 
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where 1-G(s,t) is the probability that an item entering repair at s has not 
emerged by t, as in Equation 3-54. We denote this probability by UNR(s,t), 
where UNR stands for "un-repair." Equation 3-60 also shows that specifying a 
hazard function for the repair time Xs uniquely determines the CDF of that repair 
time. 

But the hazard function also has a physical interpretation when the repair 
time probability distribution f has at most a finite number of discontinuities.10 

Given a time t and a time interval [t, t + At] short enough that there is at worst a 
discontinuity at t, but none in the rest of the interval, we have 

H(t)At = r^^r - Pr(f < RTRV <(t + At)\RTRV > t), [Eq. 3-61] 

The right-most expression in Equation 3-61 is the probability that an item 
emerges from repair during (t,t + At] given that it is still repair at t.    Thus 

H(t) =     .       may be viewed as the average rate of change of that probability 

over (t,t + At]. Taking the limit as At -> 0, H(t) is the rate of change of the prob- 
ability of an item emerging from repair per unit time at time t. 

For the exponentially distributed repair times treated in Section 3.6.6.1, we 
have 

«<«>-ir£^sj=P=jk' [Eq-3"62] 

so the hazard function, or the rate of change of the emergence probability for an 
item in repair, is constant. 

Motivated by this observation and the fact that the hazard function of a 
repair time distribution uniquely determines that distribution (Equation 3-60), 
we define a nonstationary exponential repair process to be a stochastic process 
{RTjRVr(s)}s with RTRV(s) > 0 for all s, and such that for each s, the hazard func- 
tion Hsfor the random variable RTRV(s) is constant (generally not the same con- 

-1 

stant for each s.) We define RT(s) = -±-, which would be the mean repair time if 

the hazard function at s applied for all times. 

Substituting Equation 3-60 into Equation 3-54, we find that the mean and 
variance of the repair pipeline in the case of a nonstationary exponential repair 
process is 

a(t) =J UNR(s,t)Us)ds = J exp j -J-^rräx Ms)ds. [Eq. 3-63] 

10Piecewise continuity was not needed until now, but is required for this physical 
interpretation of the hazard function.   Hazard functions in the ASM meet this condition. 
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Substituting this expression into Equation 3-57 yields the repair pipeline mean 
and variance. 

3.6.6.3 DISCRETE CASE 

In the discrete case, the demand intensity X(t) is a step function that remains 
constant within any given day t. The repair time probability distribution is the 
same within any given day, changing only from one day to the next, so RT(t) is a 
step function as well. 

To compute the pipeline mean and variance on day t, we must first compute 
UNR(s, t) for day any day i. For i -1 < s < i < t, Equation 3-60 yields 

UNR(s,t) = exp J^- du 

r 
= exp 

= exp 

V  « 

RT(u) 

J RT(i)       it H RT(j) 

-(i-s) 
RT(i) ■Uexp[RT(j) 

Substituting this expression into Equation 3-63, we have 

t 

a(t) = J UNR(s,t)X(s)ds 

= i,Mi)j UNR(s,t)ds 

= X Mi)\ J exp 

= i MI) 
(=-oo 

=  E Hi) 

Ilexp 

Ilexp 

-(i-s) 
RT(i) 

-1 
RT(j) 

RT(j)] 

Ilexp 

Jexp 
!-l 

1 

fexp 

RT(j)] 

-(i-s) 
RT(i) 

ds\ 

ds 

-w 
RT(t). 

dw. 

[Eq. 3-64] 

[Eq. 3-65] 

Let 

U(i) = exp 
RT(i). 

and V(i) =J   exp -w 
RT(i)j 

dw = RT(i)[l - U(i)].       [Eq. 3-66] 

Substituting Equations 3-66 into 3-65, we obtain 

a(t) = E Mi) II U(j) V{i). [Eq. 3-67] 
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Since RT(i) and X(i) are known, we have found the mean and variance of 
the base repair pipeline. 

We may interpret U(j) as the probability that a part in repair at the begin- 
ning of day /, will not get repaired on day ;'. Note that U is the "un-repair rate" 
for a single day, while UNR was the probability an item will not be repaired over 
the whole time period from s to T. We may think of V(i) as the probability that a 
unit that fails at a random time on day i will not be repaired before the end of 
day i. This factor is a minor adjustment the model makes because the actual 
failure may come any time during that day. If all failures occurred at the begin- 
ning of the day, we would add one day to the U(j) product and not need this 
adjustment. 

3.6.6.4 SUSPENDED RESUPPLY AND EXPONENTIAL REPAIR 

We now describe how to incorporate exponential repair when resupply is 
suspended. If we suspend resupply up through day Ns, then U and V jump to 1 
during the suspension. Thus in Equation 3-67, we have 

U(j)= 
exp(-l/RTP)   when; < 0 
1 whenO<;'<Ns, [Eq. 3-68] 

exp(-l/KTB)   when; > Ns 

and 

V(i)= 

' RTP{[1-U(i)]} when* < 0 
1 whenO <i<Ns . [Eq. 3-69] 

RT,,,{[1-LZ(0]} when i > Ns 

3.6.6.5 LEVELS OF INDENTURE FOR EXPONENTIAL REPAIR 

Exponential repair necessitates an additional calculation when an item con- 
tains subassemblies. For instance, to calculate an SRU's pipelines, the model 
looks back the corresponding LRU's BRT. However, with exponential repair, it 
is unclear how far to look back, since some LRU repairs take only a day while 
others take an unlimited number of days. In this case, we use the LRU's effective 
deterministic base repair time as the "look-back time." This involves computing 
the LRU's base repair pipeline mean with exponential repair, and then solving 
for the deterrninistic repair time that would yield the same pipeline mean. 

3.7 SUMMARY 

In this chapter, we have derived the probability distribution of base backor- 
ders under the assumption that demand rates, resupply times, repair times, and 
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other inventory system parameters are all changing over time. In the next chap- 
ter, we use these distributions to compute aircraft availability under the dynamic 
conditions encountered in war, as well as those accompanying the introduction 
of a new aircraft or a force drawdown. 
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4.0 Availability and Optimization 

This chapter discusses the computation of expected availability when canni- 
balization is permitted, as well as two major extensions to the optimization 
methodology. We also complete the discussion on the effects of lower indenture 
items on availability, which began in Chapter 3. 

4.1  AVAILABILITY WITH CANNIBALIZATION 

In this section we show how to compute expected availability as a function 
of each item's base and depot spares levels under the assumption that items may 
be cannibalized. We first motivate the concept of cannibalization by way of an 
example, and then show how the model's computation of expected availability 
changes from the method described in Chapter 2 when cannibalization is al- 
lowed. 

The ability to consolidate broken LRUs onto a single aircraft can improve 
aircraft availability, albeit at the cost of increasing flight-line maintenance 
actions. Suppose we have 10 aircraft, each having only 2 different components, 
and each component has a QPA of 1. One component has two backorders, while 
the other has one. The backorders for the first component cause holes on two 
different aircraft, grounding them. But the backorder for the second component 
may or may not ground a third plane. If one of the planes missing the first com- 
ponent is also missing the second component, then the three holes are on only 
two planes and the availability is 80 percent. Or the third hole may be on a third 
plane, yielding a 70 percent availability. If the location of this third hole is ran- 
dom, then there is a 20 percent chance that it is on one of the two already 
grounded airplanes. Thus the average availability equals 72 percent — the 
weighted sum of 80 percent availability 20 percent of the time plus 70 percent 
availability 80 percent of the time. Note that this probability calculation assumes 
that each component's holes are independent of the others, as in Chapter 2. 

Consider the case where two aircraft are NMCS for the first component and 
one aircraft is NMCS for the second component. Maintenance can restore one 
aircraft to service by taking a unit of the second component from one of the two 
planes that are NMCS for the first component and installing it in the aircraft that 
is down for the second component; this process is called cannibalization. Con- 
solidating the holes onto the fewest possible aircraft in this way raises the avail- 
ability from 72 percent to 80 percent. 

Cannibalization consolidates backorders on the fewest possible aircraft, so 
that the number of aircraft NMCS, at any given time, is the maximum of the 
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number of aircraft NMCS for each individual component. If NMCS, is the num- 
ber of aircraft down for LRU Z, then 

NMCS = max, {NMCS,}. [Eq 4-1] 

If we let ENMCS be the expected number of aircraft NMCS, the basic rela- 
tionship between availability and ENMCS is still valid: 

availability = 1-E™CS^ [Eq. 4-2] 

Unfortunately, the formula for ENMCS is complex, and the simple formulas 
of Chapter 2 do not apply. We must compute the cumulative distribution func- 
tion, CDF, of the number of aircraft NMCS and calculate ENMCS from that. 

If D is any non-negative integer, the number of aircraft NMCS is less than or 
equal to D if and only if the number NMCS for each LRU is less than or equal to 
D. Thus the probability that the number of aircraft down is less than or equal to 
D is the product, over all the LRUs /, of the probability that the number of air- 
craft down for that LRU is less than or equal to D: 

Pr (NMCS < D) = Pr[max, {NMCS,} < D] = ITPr(NMCS, < D), [Eq. 4-3] 

where the first equality holds by Equation 4-1 and the second inequality follows 
from our assumption that failures of parts are independent. It remains to find 
Pr(NMCS,<D). 

Suppose that LRU / has quantity per aircraft QPA, and base backorders BOr 

The number of slots for LRU I on D aircraft is DxQPA,, so there will be D or 
fewer aircraft down precisely when the number of backorders, or holes, is less 
than or equal to DxQPA,. Therefore 

Pr (NMCS, < D) = Pr (BO, < D x QPA,). [Eq. 4-4] 

But from Chapter 3, we know how to compute the distribution of LRU I's base 
backorders as a function of the item's base and depot spares levels, so the right- 
hand side of Equation 4-4 is known. 

Substituting this result into Equation 4-3 yields the desired formula for the 
cumulative distribution of NMCS: 

Pr(NMCS < D) = n Pr(BO, < D x QPA,). [Eq. 4-5] 

Therefore 

ENMCS =   E[Dx Fr(NMCS = D)] 

=  S(Dxn Pr(BO, < D x QPA,) -II Pr [BO, < (D -1) x QPA,] 

4-2 

[Eq. 4-6] 



Finally, by putting this result for ENMCS into Equation 4-2, we have found the 
expected aircraft availability under cannibalization as a function of each item's base and 
depot spares levels. 

It is convenient to have a more computationally tractable expression for 
ENMCS. By applying the characterization of an expectation as the sum of the 
tails of the probability distribution1 

ENMCS = X Pr (NMCS > D) 
D:° [Eq. 4-7] 

=   X [1-Pr (NMCS < D)]. 
D = 0 

We approximate ENMCS with a finite number of terms in the above sum. Tak- 
ing N large enough that 1 - Pr(NMCS < D) is negligible for D > N in Equation 
4-7, we have 

ENMCS « f, [1 - Pr (NMCS <D)]=N-t, Pr (NMCS < D). [Eq. 4-8] 
D=0 D=0 

4.2  COMPUTING SPARES MIXES WITH 

CANNIBALIZATION 

The ASM has three methods of producing spares mixes with cannibaliza- 
tion. These methods correspond to different objective functions — confidence of 
having a specified number of aircraft available, ENMCS, and a combination of 
EBO and ENMCS. For any one of these objective functions, the model chooses 
spares in order of benefit per dollar, where benefit is described in terms of the 
objective function. The model builds a curve of achieved objective versus total 
cost, each point on the curve corresponding to a known spares mix. This mix 
may be thought of as offering either the best performance (highest confidence, 
lowest ENMCS, etc.) for a given cost, or the lowest cost for a specified level of 
performance. The model is typically applied in the situation where we seek the 
spares mix that offers a specified performance for the least cost. 

♦ Confidence optimization minimizes the cost of meeting a specified probabil- 
ity that the number of aircraft NMCS does not exceed a given target D.2 

This probability is often called the confidence of meeting the target D, and 
the use of marginal analysis to maximize this confidence is called confi- 
dence optimization. 

♦ ENMCS "optimization" seeks to minimize the cost of meeting a target for 
expected availability.  As will be shown, it considers the confidence for all 

1 We showed this for backorder CDFs in Section 3.3.4, "Computational Methods." 
2 In the USAF context, the associated number of aircraft desired mission capable, 

NAC - D, is usually called the direct support objective, or DSO. 
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possible values of NMCS (from zero on up) and "optimizes" a weighted 
sum of them. 

♦ EBO/ENMCS "optimization" uses two measures of performance: the pri- 
mary measure — ENMCS — and a secondary one — EBOs. (This is an 
experimental method that has not yet been fully tested.) 

The methods are similar but result in spares mixes that rely on cannibalization to 
different degrees. Chapter 5 displays results for the three options (along with 
results for the no-cannibalization method of Chapter 2). 

4.2.1   Confidence Optimization 

Given a number of aircraft D that we are willing to allow down, we define 
the confidence of meeting that objective as the probability that there are no more 
than D aircraft NMCS. From Equation 4-5, we see that 

confidence = Pr(NMCS < D) = n Pr(BO, < D x QPAt). [Eq 4-9] 

Confidence optimization is the original and most basic form of optimization 
of availability with cannibalization. The formula for confidence under cannibali- 
zation is identical in structure to the formula for availability under noncannibali- 
zation, and marginal analysis can be applied to obtain optimal spares mixes. 
(See Appendix A.) Confidence optimization maximizes the probability (confi- 
dence) that the number of aircraft NMCS does not exceed a given target. 

As we did in Chapter 2 for optimizing aircraft availability without canni- 
balization, we can optimize the separable function of the logarithm of the confi- 
dence: 

^(confidence) = In [Pr (NMCS < D)] = X In [Pr (NMCS, < D)].        [Eq. 4-10] 

Let Pr(NMCS, < D\s,) be the probability of no more than D aircraft down for 
component /, given that its the total spares level, optimally allocated between the 
depot and base, is s,. Let AX be the change in any quantity X. If we increase the 
number of units of component k from sk-l to sk, there is no change in 
Pr(NMCS, < Dls,) except when I = k, so we increase the logarithm of the prob- 
ability of no more than D aircraft down by 

Aln[Pr(NMCS<D)]  = £ln[Pr (NMCS, < Dk)]-£ln[Pr(NMCS, < D\sk - 1)] 

= ln[Pr(NMCS, < D\sk)]-\n[Pr(NMCSk < D\sk -1)] [Eq. 4-11] 

= Aln[Pr(NMCS*<D)]. 

Therefore we see that the benefit-to-cost ratio for moving from sk to sk + 1 
units of component k is 
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Aln[Pr(NMCS < D)] _ Aln[Pr(NMCSt < D)] 
Acosf ~ C* ' q'   " 

where Ct denotes the unit cost of component k. This benefit-to-cost ratio is analo- 
gous to the sort value in Equation 2-26. 

As in the case of aircraft availability without cannibalization, we compute 
these benefit-to-cost ratios for each spare separately and then sort them to pro- 
duce an ordered shopping list and confidence-to-cost curve. Also as in that case, 
we use marginal analysis, suitably modified to handle nonconcave sections of 
the confidence-to-cost curve, to determine the optimal solution. (See Appendix 
A for more detail.) 

4.2.2   The ENMCS Objective Function 

While marginal analysis allows us to produce optimal spares mixes with 
respect to confidence, confidence has some drawbacks as an objective function. 
Note in Equations 4-9 and 4-12 that confidence and the associated marginal 
benefit depend only on the probability that the number of aircraft NMCS is less 
than the target number of aircraft allowed down. Confidence optimization for 
an NMCS target of four aircraft down does not consider the individual probabili- 
ties of zero, one, two, etc., NMCS aircraft down but only the sum of those prob- 
abilities. A wing commander, however, may well be interested in how likely the 
wing is to have a particular number of aircraft available. Furthermore, even if 
the allowed number of aircraft down is exceeded, it makes a difference opera- 
tionally if it is exceeded by only 1 aircraft or by 10 aircraft, and this issue is not 
directly addressed by confidence optimization. 

This shortcoming of confidence optimization leads to consideration of 
ENMCS as an objective function, since ENMCS is more sensitive than 
confidence-level to the distribution of NMCS. Unfortunately, ENMCS is an 
inseparable objective function, as we can see from Equation 4-6. 

We have experimented with a "greedy heuristic" that searches for the spares 
mix that attempts to minimize ENMCS in the same way as marginal analysis. 
This method produces good solutions, though not demonstrably optimal ones. 
The term "greedy heuristic"3 emphasizes the fact that the search algorithm 
"greedily grabs" a unit of the component with the best benefit-to-cost ratio at 
each stage of the search; we reserve the term "marginal analysis" for the special case 
where the search may be shown to locate the optimal solution. 

3 In some contexts, this is called the "method of steepest descent" or "gradient 
search." 
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As in the case of confidence optimization, we develop an expression for the 
benefit-to-cost ratio, or sort value, for adding an additional unit of component k. 
In Equation 4-8, set N = NAC + 1, where NAC is the number of aircraft; then 

ENMCS = NAC + 1-2 Pr(NMCS < D). [Eq. 4-13] 

Thus minimizing ENMCS is the same as maximizing the sum of 
p(NMCS < D). Using the fact that E(mission-capable aircraft) = NAC-ENMCS, we 
can rewrite Equation 4-13 as: 

E(mission-capable aircraft) = -1+ X Pr (NMCS < D). [Eq. 4-14] 

Our objective from here on will be to maximize this sum.  Using Equation 
4-3, we rewrite Equation 4-14 as 

E(mission-capable aircraft) = -1+2 Pr (NMCS < D) 
D=0 

NAC i- 

= -1+2   nPr(NMCS, <D) 
D=0  L   / 

= -1+2°expIlnTlIPr(NMCS, < D)]\ 
D=O I     L ' -J 

= -l+2Cexp{2ln[Pr(NMCS; < D)]j. 

[Eq. 4-15] 

Let s be the spares level for LRU ;', let B; be the increase in E (mission-capable air- 
craft) due to an additional spare of LRU], and let 

Aexp 2ln[Pr(NMCS; < D)] 
i i 

= exp 2ln[Pr(NMCS, < Dls, + 1)] --exp Zlrt[Pr(NMCS, < Dlsj)] 
[Eq. 4-16] 

Then from Equations 4-15 and 4-16, we have 

Bj = 2 Aexp 2ln[Pr(NMCS, < D)] [Eq. 4-17] 
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Using the differential relationship 6eP> = j-{em)Ax = efix)f(x)Ax » e^>A/(x),we can 

approximate this increase by 

NAC f 1 

Bj « Z exp Zln [Pr(NMCS, < D)]   x A Zln[Pr (NMCS, < D)] 
D=0 l   / > I 
NAC I I 

= Z exp Z, In [Pr(NMCS, < D)]   x Aln[Pr(NMCS; < D)]        [Eq. 4-18] 

MC 

= Z Pr(NMCS < D) x Aln[Pr(NMCS; < D)], 

where the first strict equality follows because the only term in the sum 
Z ln[Pr(NMCS, < D)]  that changes when the spares level for component j 

i 

changes from s. to s;. + 1 is the one where / = /, and the second strict equality fol- 
lows by Equation 4-10. 

We may write Equation 4-18 as 

NAC r 

Bj-.« Z WD x A In Pr(NMCS    < D) , [Eq. 4-19] 
D=O L ; J 

where 

WD = Pr (NMCS < D). [Eq. 4-20] 

That is, the benefit function for adding a unit of component / is a weighted 
average of the benefit functions for all possible NMCS values D, and the weights 
are the corresponding confidence levels (the cumulative probability that D or 
fewer aircraft are down for lack of spares). Since we compute these probabilities 
to compute ENMCS, they are readily available to use as weights. Another way 
to describe the benefit function is as a dot product of two vectors; the weights 
vector and the delta log confidence vector (which we call the benefit vector). 

Unfortunately, each additional buy changes the weights vector, and thus 
with each buy all the dot products must be recomputed. As the model builds the 
curve of ENMCS versus cost, buying spares one at a time, it must recompute all 
the dot products after each buy. This procedure is prohibitively slow for large 
numbers of components.4 

Note that in adding spares for components other than component;' to the 
mix, leaving the number of units of component / unchanged, the benefit vector 
does not change, but the weight vector does. The change is a consequence of the 
inseparability of the objective function. If the objective function could be written 

4 Despite this drawback, the ASM does use this approach to compute AWP time for 
SRUs. The relationship for LRUs AWP for SRUs is the same as the formula for aircraft 
NMCS for LRUs. Since there are normally few SRUs on each LRU, we use the greedy 
heuristic to produce the curve of AWP versus cost for each LRU, as we will describe later 
in this chapter. Because of the small number of SRUs, the inefficiency of the greedy heu- 
ristic is not significant. 
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as a sum (or product) of functions, each depending only on the spares level of a 
single LRU, then the marginal benefits could also be computed independently, 
as in the case of confidence-level optimization. 

We note that we can also express the marginal benefits for confidence-level 
optimization in the dot product form. Set the weight vector to 8(D), the Dirac 
delta, with the coordinate equal to one in the Dth position and zero otherwise; 
then the benefit from an additional spare shown in Equation 4-19 reduces to the 
change in the log of the confidence level. 

Thus Equation 4-19 (with the appropriate choice of weights) describes the 
marginal benefit of adding a spare under both confidence-level optimization and 
the greedy heuristic. In Sections 4.2.3 and 4.2.4, we will discuss the behavior of 
benefit functions with other weights. 

4.2.3   Weighted Heuristics 

Between the two extremes of the greedy heuristic, with its nonconstant 
weight vector, and confidence-level optimization, with its simple Dirac delta- 
weight vector, lies a family of solution algorithms determined by different 
weight vectors. Our investigation into these weighted heuristics revealed two 
types of particular interest. 

One type of heuristic seeks to minimize ENMCS with less computational 
effort than the method we described previously. The other heuristic allows us to 
produce spares mixes resulting in a better balance of confidence-level, ENMCS, 
and EBOs, for a given investment in spares, than we obtain with confidence or 
ENMCS optimization. 

In either case, we limit ourselves to fixed-weight vectors WD for processing 
efficiency, and perform a greedy algorithm, choosing spares in order of their 
benefit-to-cost ratios, where the ratios for any component; are of the form 

X WD x Aln[Pr(NMCS; < D)] 
5^ . [Eq. 4-21] 

COStj ^ 

Viewing the numerator as a dot product, as we did earlier, we see that the 
benefit vector (i.e., the log confidence vector) for component;' is a function only 
of component j's stock level, and need be computed only once for each spares 
mix that has a given number of units of component /'. 

This last fact ensures efficient processing and short run times, although we 
cannot guarantee strict optimality of the solutions. The key to the goodness of 
the solutions is a judicious choice of weights, which we discuss in Sections 
4.2.3.1 and 4.2.3.2. 
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4.2.3.1 WEIGHTED HEURISTIC WITH AN ENMCS OBJECTIVE 

To perform ENMCS "optimization/' the model uses a weighted heuristic 
with a set of weights formulated for the user's ENMCS target. For each ENMCS 
target in the typical range of interest, there are weights that yield spares mixes 
with approximately the same cost as those produced by the slower algorithm 
described in Section 4.2.2 (we will refer to the method of that section as the 
"pure" greedy heuristic in the discussion that follows). 

One way to generate an effective set of weights is as follows: start with any 
initial weight vector, run the weighted heuristic search until attaining the 
ENMCS target, store the confidence vector (the CDF) for this spares mix, and 
then rerun the model (to the same ENMCS target) using that stored CDF as the 
input weight vector. We have observed that after this process of computing 
CDFs has been iterated several times (for any of the model databases we have 
tried), the sequence of weight vectors changes little with subsequent iterations, 
and any of the CDFs obtained after this point produce spares mixes meeting the 
ENMCS target with comparable cost to that obtained by the pure greedy heuris- 
tic. 

We experimented with various databases and NMCS targets and developed 
an empirical method for generating weights that closely matches the more cum- 
bersome iterative process but is based solely on the NMCS target. (We will pre- 
sent examples of those weights shortly.) Runs using those weights produced 
spares mixes that met the ENMCS target with cost close to that obtained by the 
pure greedy heuristic and had a significantly lower ENMCS than mixes with the 
same cost produced using confidence optimization. This technique also has the 
unintended benefit of yielding fewer total expected backorders than does confi- 
dence optimization. Since fewer expected backorders means fewer expected 
cannibalization actions (all else being equal), this benefit is of considerable inter- 
est. 

Why does the ENMCS weighted heuristic yield a lower number of EBOs 
than does confidence optimization? Recall that for confidence optimization, we 
focus on only one element in the benefit vector. All weights are set to zero 
except the one for the target (assuming an integer target for simplicity). 

We found that the weights for the low NMCS values were the key to driving 
expected backorders down for the ENMCS weighted heuristic. A nonzero W0 or 
W1 in Equation 4-21 has a great impact on expected backorders. Many parts are 
unlikely to have more than a small number of units in their pipelines and thus 
have almost no probability of grounding more than 1 aircraft. In confidence 
optimization with an NMCS target of, say, 4, there is no incentive for the algo- 
rithm to buy spares of these parts. However, in the ENMCS heuristic, the ASM 
considers the probability of grounding 1, 2, or 3 aircraft. Items unlikely to have 
more than a small number in their pipelines contribute to these probabilities, and 
the model will tend to add them to the spares mix. Thus the ENMCS heuristic 
produces an increased range of parts with resulting lower total expected backor- 
ders.    Chapter 5 presents model run examples that quantify the change in 
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expected backorders that we typically observe in moving from confidence opti- 
mization to the ENMCS weighted heuristic. 

The empirically derived weight formulas are fairly complex, so we will not 
present them here. To give the reader an idea of the typical weights, we present 
an example. The ENMCS heuristic with a target NMCS of 4 uses the set of 
weights in Table 4-1. The ith component of this vector approximates the CDF(z') 
of NMCS resulting from a spares mix produced by the greedy algorithm with an 
ENMCS of 4. The vector is similar for other relatively small ENMCS targets, 
except that it is shifted so that the 0.73 weight corresponds to the ENMCS target. 
However, ENMCS targets much higher than 4 create slightly broader CDFs, as 
will be shown in Section 4.2.3.2. 

Table 4-1. 
Comparison of Weights for Confidence 
and ENMCS Methods (NMCS Target = 4) 

Number ENMCS Confidence 
of aircraft method method 
NMCS, D weights, WD weights, WD 

0 0.00 0 

1 0.0000005 0 

2 0.05 0 

3 0.40 0 

4 0.73 1 

5 0.90 0 

6 0.95 0 

7 0.98 0 

8 0.99 0 

9 1.00 0 

10 1.00 0 

4.2.3.2  WEIGHTED HEURISTIC WITH JOINT EBO/ENMCS OBJECTIVE 

We also developed a weighted greedy heuristic that focuses on two meas- 
ures of performance: the primary measure — ENMCS — and a secondary 
one — EBOs. EBOs are important because they are a surrogate for maintenance 
workload. Although cannibalization yields improved aircraft availability over 
the similar noncannibalization case, it has the disadvantage of causing flight-line 
maintenance actions to increase. Cannibalization requires the additional mainte- 
nance steps (and risks) of borrowing items from grounded aircraft and then rein- 
stalling them later when the backorder is filled.   Other things being equal, a 
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spares mix with a high projected expected backorder total requires more canrti- 
balization actions to produce a given availability than does a mix with lower 
expected backorders. With the EBO/ENMCS heuristic, the model develops a 
compromise spares mix that produces a slightly worse ENMCS output than does 
the pure ENMCS heuristic — but significantly lower expected backorders (i.e., a 
reduced maintenance workload). 

To develop the weights for the EBO/ENMCS heuristic, we enhance the EBO 
reduction effect in the ENMCS heuristic by increasing the weights for the lower 
NMCS states. We achieved good results by increasing the lowest positive 
weight and attaching an exponential tail to the left of the weight vector. That is, 
we take the lowest nonzero weight from the ENMCS optimization weights, set 
its weight to 0.005, make the previous weight 70 percent of that, and each of the 
other previous weights 70 percent of its successor. Thus for an NMCS target of 
4, we start with the NMCS weights presented in Table 4-1 and change the 
weights for D = 0,1,..., as shown in Table 4-2. 

Table 4-2. 
Weights for ENMCS and EBO/ENMCS Methods 
(NMCS Target = 4) 

Number ENMCS EBO/ENMCS 
of aircraft method method 
NMCS, D weights, WD weights, WD 

0 0.00 0.0035 

1 0.0000005 0.005 

2 0.05 0.05 

3 0.40 0.40 

4 0.73 0.73 

5 0.90 0.90 

6 0.95 0.95 

7 0.98 0.98 

8 0.99 0.99 

9 1.00 1.00 

10 1.00 1.00 

For an ENMCS target of 7, the weights for the pure ENMCS and the 
EBO/ENMCS heuristics are as shown in Table 4-3. 
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Table 4-3. 
Weights for ENMCS and EBO/ENMCS Methods 
(NMCS Target = 7) 

Number ENMCS EBO/ENMCS 
of aircraft method method 
NMCS, D weights, WD weights, WD 

0 0.00 0.0012005 

1 0.00 0.001715 

2 0.00 0.00245 

3 0.00 0.0035 

4 0.001 0.005 

5 0.080 0.080 

6 0.400 0.400 

7 0.715 0.715 

8 0.885 0.885 

9 0.950 0.950 

10 0.980 0.980 

11 0.990 0.990 

12 1.00 1.00 

13 1.00 1.00 

Changing the weights from those of the pure ENMCS case to those shown for 
the EBO/ENMCS case drops expected backorders precipitously, with only a 
slight ENMCS penalty. (See Chapter 5 for examples with detailed expected 
backorder comparisons.) 

Note that the ENMCS weights are somewhat different from those with a tar- 
get of 4, shown in Table 4-1. This subtle difference is important — for higher 
NMCS targets, we have found that we need weights with a slightly broader dis- 
tribution. Failure to allow for this broader distribution can significantly degrade 
performance for high NMCS targets. 

4.2.4   Confidence Optimization with Nonintegral Targets 

Another application of weights is confidence optimization with nonintegral 
targets. In this case, all weights are set to zero except the ones for NMCS values 
immediately below and above the target. The nonzero weights are set so they 
sum to one, and the weighted average of their corresponding NMCS values 
equals the NMCS target. For example, a target of 3.6 gives the weights shown in 
Table 4-4. 
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Table 4-4. 
Weights for Confidence Method 
(NMCS Target = 3.6) 

Number Confidence 
of aircraft method 
NMCS, D weights, WD 

0 0.0 

1 0.0 

2 0.0 

3 0.4 

4 0.6 

5 0.0 

6 0.0 

4.2.5   Partial Cannibalization 

In Chapter 2 we introduced the concept of system availability and discussed 
the calculation of availability without cannibalization. We have now extended 
the discussion to include cannibalization, whereby maintenance can consolidate 
holes onto as few aircraft as possible. Some components, however, may be diffi- 
cult or impossible to cannibalize or may involve such a risk of collateral damage 
as to make cannibalization unwise. The model has a partial cannibalization 
option, which is still experimental; we explain the underlying ideas below. 

In this case, we must compute ENMCS somewhat differently from the way 
we did in the second part of Equation 4-8. But as in that full cannibalization 
case, we still need to compute Pr(NMCS < D) for each D > 0. 

Assume, as in the full cannibalization case, that each part has an application 
percentage of 100, and again assume that failures of different parts are independ- 
ent. Assume that there are NAC aircraft, there are QPAX locations for part / per 
aircraft, and part / has BO, backorders. We will further assume that for each /, 
BO, is small relative to NACxQPAh for each noncannibalizable part, BO,<NAC, 
and that backorders for noncannibalizable parts are uniformly distributed over 
aircraft. 

Let NMCSMr be the number of aircraft with at least one hole for a noncanni- JNC 

balizable part and NMCSC be the number of aircraft with at least one hole for a 
cannibalizable part, after consolidating holes onto the minimum number of air- 
craft. Let NMCS be the minimum number of aircraft down; we will derive an 
expression for Pr(NMCS < D). 
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If NMCSc ^ NMCSNC, then as in the Ml cannibalization case, all of the holes 
for cannibalizable parts can be moved (if they are not already there) to aircraft 
down for noncannibalizable parts, so that in this case NMCS = NMCSNC . On the 
other hand, if NMCSC > NMCSNC, then by moving as many holes as possible to 
the aircraft down for noncannibalizable parts, we have NMCSNC aircraft down 
for both noncannibalizable and cannibalizable parts, and NMCSC - NMCSNC air- 
craft down for cannibalizable parts only. Therefore in this case, 
NMCS = NMCSNC + (NMCSc-NMCSNC) = NMCSc. Combining the two cases 
shows that 

NMCS = max (NMCSNC/ NMCSC). [Eq. 4-22] 

From Equation 4-22 and the assumption of the independence of failures for 
different parts, 

Pr(NMCS<D) = Pr(NMCSNC<D,NMCSC <D) [£    ^^ 
= Pr(NMCSNC<D)Fr(NMCSc<D). q' 

As in the development of Equation 4-5 in the full cannibalization case, we 
see that the second factor of the product in Equation 4-23 is given by 

Pr(NMCSc < D) = II Pr(BO; < D X QPAt), [Eq. 4-24] 

where now the index / refers only to cannibalizable parts. 

We approximate the first factor in Equation 4-23.5 Whenever we refer to a 
part I in this discussion, it means a noncannibalizable part. Let F be the fraction 
of the NAC aircraft not down for a part. Because backorders are uniformly dis- 
tributed over aircraft and BO,<NAC, the fraction of aircraft not down for part 1 is 

BO 
F, = 1 '—. since BO, is a random variable, this quantity is as well. Because of 

NAC ' 
our assumption that backorders for different parts are independent and uni- 
formly distributed across aircraft, the fraction of the F;NAC aircraft not down for 
part / that is not down for another part k, is Fk, and the fraction of the total air- 
craft not down for either part is F, Fk. Thus 

F-n(l-^> IB***] 

5 For a treatment not assuming uniformly distributed backorders, see Gaver. 
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To approximate F, observe that for x close enough to 1, the first two terms of 
the Taylor-series expansion for ln(x) about x = 1 form a reasonable approxima- 

BO 
tion; thus ln(x) ~x-l. In Equation 4-25, let x = 1 -       ' . Then we have 

RD B°i 
1 - -2^L = x = eln(x) « e(rf) = e~™c. [Eq. 4-26] 

Applying Equation 4-26 to each factor in Equation 4-25, we find 

f        RO, "\ B0/ J  
F = ni-^;Une«=e-W [Eq.4-27] 

NAC)     i 

Letting BO = 2 BO; in Equation 4-27, we find 

NMCSNC = NAC x (1 - F) * NAC x fl - e"^ 1. [Eq. 4-28] 

Since BO is a sum of independent random variables, uniformly bounded by 
NAC, we may approximate its probability distribution by a normal distribution 
with mean EBO and variance VAR(BO).6 We compute the means and variances 
of each item's backorders as in Chapter 3, and using the independence of backor- 
ders for different components, sum the means and variances respectively, to 
obtain EBO and VAR(BO). By Equation 4-28 and some straightforward algebra, 

Pr(NMCSNC < D) = Pr BO<-NAClnfl-   D 

NAC 
[Eq. 4-29] 

Substituting the probabilities from Equations 4-29 and 4-24 into 4-23, we 
have found Pr(NMCS < D). 

The current version of the model uses a somewhat simpler method, in 
which we compute the expected fractions of aircraft not down for each part, 
replace the number of backorders for each part in the above derivation by its 
expected value, and obtain 

/ -EBO \ 

ENMCSNc = NACll-eNAC 1. [Eq. 4-30] 

The model then approximates P(NMCSNC ^ D) with a cumulative Poisson 
distribution with mean ENMCSNC. Substituting this probability and the result of 
Equation 4-24 into Equation 4-23, we obtain Pr(NMCS) < D. 

Whether using the normal or Poisson approximation for Pr(NMCS < D), the 
backorder distributions from which these probabilities are computed are func- 
tions of the spares levels, so the confidence of no more than D aircraft down is 

6 Provided that the number of noncannibalizable parts is sufficiently large, this is 
justified by a generalization of the central limit theorem due to Lindeberg [Feller, Vol. 1]. 
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now expressed as a function of those spares levels. For confidence optimization, 
this is sufficient; for ENMCS optimization, we use the ENMCS computed by 
Equation 4-13. We recommend ENMCS optimization for the reasons discussed 
in the pure cannibalization case. 

To illustrate partial cannibalization in a simple case, we again consider the 
example from Section 4.1 with 10 aircraft with only 2 different parts. One com- 
ponent has two backorders, while the other has one. With cannibalization, only 
2 aircraft need be NMCS; without it, most likely 3. 

Suppose only one of the components may be cannibalized. If that compo- 
nent is the one with one backorder, the serviceable unit needed may be moved 
from 1 of the 2 aircraft NMCS for the other component to restore the third air- 
craft to service. Conversely, if the component with 2 backorders may be canni- 
balized, one of the aircraft NMCS for that component may be restored to service 
by cannibalizing from the single aircraft NMCS for the other component. In 
either case, the total NMCS is 2 — the same as for full cannibalization. 

In fact, in any case in which only 1 component may not be cannibalized, the 
holes for all the other parts can be consolidated as much as possible to conform 
to the NMCS for that 1 component, and the NMCS number is the same as for full 
cannibalization. 

4.3  LEVELS OF INDENTURE 

Most aircraft repair is modular. The aircraft is repaired on the flight line by 
removing and replacing failed LRUs. LRUs are repaired in the shop by remov- 
ing and replacing failed SRUs. This relationship is called levels of indenture, 
because work breakdown structure depictions of parts on an aircraft typically in- 
dent subassemblies beneath their main assemblies in the listings. It is not 
unusual for a system to have more than two levels of indenture. SRUs may con- 
tain sub-SRUs, which may contain sub-sub-SRUs, and so on. We will not use 
any special names for these lower indenture items, simply calling them SRUs. 

4.3.1   Awaiting Parts Pipelines for LRUs 

Since only LRUs are used directly in aircraft repair, only LRU backorders 
directly make aircraft NMCS. SRU backorders hold up the repair of LRUs but do 
not directly affect aircraft and thus should not be included in the formulas for 
aircraft availability, except as their backorders affect backorders of their parent 
LRUs. The equation for aircraft availability in the noncannibalization case is 
unchanged, but we must now understand that the subscript L stands for LRUL 

and that the product is taken over the LRUs only: 

A = n(l-^^JPAL. [Eq.4-31] 
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Similarly, in the cannibalization case, Equations 4-1 through 4-30 are 
unchanged, but again we understand that the L in them stands for LRU. Thus 
for example, in Equation 4-3, the product of Pr(NMCS, < D) is taken over the 
LRUs only. 

The model explicitly accounts for the delay in LRU repair caused by SRU 
backorders. SRU backorders cause holes in LRUs in much the same manner that 
LRU backorders cause holes in aircraft. Those LRUs with holes for SRUs (await- 
ing parts, or AWP) constitute another segment of the LRU pipeline. We assume 
that this additional pipeline segment pertains to base repair only; depot repair is 
assumed to have a sufficient supply of SRUs. This permits us to avoid the com- 
plication of a multi-echelon AWP pipeline calculation. 

In Chapter 3, we computed the distributions of SRU backorders. From these 
distributions, we compute the expected number of LRUs AWP from the SRU 
backorders (we explain this below), add that pipeline to the others, and calculate 
LRU backorder distributions and aircraft availability as before. (This assumes 
the model option selected is a VMR of 1. Otherwise, the model adds the LRU's 
AWP pipeline variance to the variance of the base resupply pipeline and calcu- 
lates the distribution of LRU backorders as in Chapter 3. For simplicity, we will 
not treat the Vari-METRIC option in the remainder of the chapter.) 

MOD-METRIC [Muckstadt] and the Aircraft Availability Model (AAM) 
[O'Malley] assume that each SRU backorder holds up exactly one LRU in base 
repair. A particular LRU's AWP pipeline is the sum of all of its SRUs' expected 
backorders (SRU backorders for a different LRU do not affect this LRU). Thus if 
we let AWPL denote the mean awaiting parts pipeline for LRU L, TEBOs denote 
the number of expected backorders for SRUS, and S czL denote an SRU that is a 
sub-component of LRUL, we have 

AWPL =X TEBOs ■ [Eq. 4-32] 
ScL 

The ASM, in contrast, assumes that base repair consolidates SRU shortages 
(i.e., cannibalizes SRUs). This process is analogous to LRU cannibalization on 
aircraft, and the formula for the expected number of an LRU AWP is analogous 
to the cannibalization ENMCS formula. 

To see this, let NAWPL be the number of units of LRU L AWP, NAWPLS be 
the number of units of LRU L AWP for SRU S, and QPAL s be the quantity of SRU 
S installed on LRU L; then we have the analog of Equations 4-3 and 4-5: 

Fr(NAWPL < D)   = n Pr (NAWPLS < D) 
ScL [Eq. 4-33] 

= YlFr(BOs<DxQPAL,s). 
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Just as we derived the expression for ENMCS in Equation 4-8, we use these 
probabilities to get AWPL, the expected number of units of LRU L AWP: 

AWPL = X [1 - Pr(NAWPL < D)]. [Eq. 4-34] 
D>0 

Note that the probabilities in Equation 4-34, and therefore AWPL, depend on the 
spares levels for the SRUs belonging to LRU L. 

Including the AWP pipeline, and assuming that there are N uniform bases,7 

Equation 2-12 for the mean base resupply pipeline at base / becomes 

Bpipeuj = BRpipeL + OSpipeL + D£^°L + AWPL, [Eq. 4-35] 

where the subscript L has been included in all the variables to reference LRUL. 

As in Chapter 3, this expected pipeline is used to compute the distribution 
of base backorders; the only difference is that the distribution now depends on 
the spares levels for the LRU's associated SRUs as well as the base and depot 
spares levels for the LRU itself. 

4.3.2   Multi-Indenture Optimization 

In Section 2.2.3, considering only LRUs without SRUs, the ASM finds the 
combination of base and depot spares levels with the lowest EBO for each total 
LRU spares level; this step is a prelude to marginal analysis. The ASM trades off 
depot spares against base spares. For an LRU with subassemblies, the model 
performs a three-way tradeoff between the depot, base, and SRUs' spares levels 
to find the combination that gives the lowest total LRU base EBOs for a specified 
dollar total. For example, for an LRU that costs $1,000, the model trades off 
spares at the depot versus spares at the base versus $1,000 increments of SRUs. 

The ASM first processes SRUs, performing the depot/base tradeoff and 
marginal analysis for each SRU. Then it aggregates the SRU results for each par- 
ticular LRU, producing an AWP-versus-cost curve for that LRU along with its 
ordered shopping list of SRU buys. The ASM uses this curve of AWP-versus- 
cost, together with its knowledge of how base and depot spares levels affect the 
LRU's expected backorders, in the LRU's three-way tradeoff. If there are more 
than two levels of indenture, the model first processes the lowest level SRUs, 
performing the depot/base tradeoff and marginal analysis. The results are then 
passed up to the next level for input into the three-way tradeoffs. These trade- 
offs and marginal analysis are performed at this level and the results are passed 
up to the next level. This process is repeated until level 1 (the LRU level) is 
reached.8 

7 See Chapter 3 for computing the expected base resupply pipeline with multiple 
bases. 

BSee O'Malley for more detail. 
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4.3.3   Common-Component SRUs 

The ASM also allows for common-component SRUs (SRUs used in more 
than one LRU). The model computes the expected pipelines for these SRUs, con- 
sidering demands generated by the repair of each of their parent LRUs and allo- 
cating backorders to those parents. 

In MOD-METRIC and the AAM (which do not consider cannibalization of 
SRUs), computing AWP for common SRUs is straightforward. SRU backorders 
are simply prorated to LRU "parents," using factors computed based on usage 
rates. For example, suppose that 60 percent of SRU 1 total utilization is on LRU 
A and 40 percent on LRU B (typically this means that 60 percent of the flying 
time comes on LRU A and 40 percent on LRU B, although use can also relate to 
other factors besides flying hours). We assume that 60 percent of the demands 
for SRU 1 came from LRU A and that 60 percent of the backorders have an 
impact on LRU A. Thus for SRU 1, we give LRU A a 60 percent prorating factor 
and LRU B a 40 percent one. We then apply 60 percent of SRU l's backorders to 
LRU A and 40 percent to LRU B. Each prorated piece of the SRU's EBOs is then 
included in Equation 4-35. 

However, because the ASM considers SRU cannibalization, the formula is 
much more complicated. Instead of simply prorating the SRU EBOs, the model 
must prorate the entire CDF of SRU backorders (since the AWP calculation in 
Equations 4-33 and 4-34 requires that CDF). To do this, we have to break down 
the CDF into the probability distribution function, split the probability distribu- 
tion binomially, and then roll up the results into CDFs again. Given a particular 
LRU with an SRU, this split divides the backorders for the SRU into those that 
affect the given LRU and those that affect other LRUs. (The ASM does make the 
simplifying assumption that cross-cannibalization — the cannibalization of an 
SRU from LRU type A to an LRU of a different type — does not occur.) 

To make this more precise, let PLS be the prorating factor (just described) for 
SRUS on LRUL, BOs be the total backorders for SRUS, and BOLS be the backorders 
of SRUS that affect LRUL. Viewing PL s as the probability that a randomly chosen 
backorder for SRUS affects LRUL, we see that 

Pr (BOL,s = N)  =   2 Pr(BOL;S = NiBOs =M) Pr(BOs =M) 
M=N 

( M \ Pq- 4"36i 
PN

L,s(l-PL,s)M-Np(BOs=M). =  X 
M=N y J.1    j N 

We then substitute the probability distribution of the SRUS backorders affecting 
LRUL into Equation 4-33, and use it in computing the LRUL 's expected AWP 
pipeline (Equation 4-34). 
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5.0 Sample Results and Sensitivity 

In previous chapters, we have described the mathematics of the ASM and 
several modes of operating the model. We will now present and analyze some 
representative spares mixes generated by the model. We will describe and pre- 
sent examples of the basic model inputs and how the spares mix varies with 
those inputs. We will discuss the following: 

♦ Basic model inputs 

► The availability and cost target options 

► The user-supplied parameters necessary for specifying a spares mix 

♦ Developing spares mixes for steady-state conditions, dynamic wartime con- 
ditions, and combinations of the two 

♦ Optimization with multiple levels of indenture 

♦ Spares mixes with and without cannibalization 

♦ Dynamic flying programs over time 

♦ Spares mixes supporting peacetime and wartime activity simultaneously. 

5.1  MODEL INPUTS 

5.1.1   Basic Targets 

The ASM computes spares requirements for two types of targets: either an 
unconditional availability target or an availability target under a budget con- 
straint. An availability target is expressed in terms of NMCS aircraft or aircraft 
on ground (AOG). Translation from availability to an NMCS value is based on 
equations 2-15,2-16, and 4-2, which state that: 

availability = 1 - , [Eq. 5-1] 

or 

expected availability = 1 - , [Eq. 5-2] 
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where NAC equals the number of aircraft under consideration. The model 
always attempts to meet the availability target or targets for the least cost. With 
an unconstrained budget, it always meets the availability targets. 

In addition to expressing the availability target as an average, the user can 
specify a confidence for that target. For example, the user may want to be 
95 percent certain that no more than four aircraft in a squadron will be NMCS 
over the course of a war scenario. Unfortunately, the confidence level and the 
related availability rate are frequently confused with each other. For example, 
suppose we have a 20-aircraft squadron with a desired availability of 16 out of 20 
aircraft, or 80 percent of the squadron. The statement of the goal, then, would be 
"95 percent certain of 80 percent availability." The potential for confusion is 
obvious. 

5.1.2   Flying-Hour Scenarios 

Since component failures are driven by weapon-system activity levels, the 
ASM requires that a flying-hour scenario be specified. The model can estimate 
spares requirements for the following: 

♦ Steady-state conditions under which the aircraft flying hours (and item 
pipelines) remain constant over time. 

♦ Dynamic conditions under which aircraft flying hours (and item pipelines) 
may vary dramatically over a few days, weeks, or months. 

♦ Combined scenarios under which aircraft flying hours change from steady- 
state to dynamic conditions. This allows the user to estimate the effect of 
the steady-state conditions on aircraft availability during the period of the 
dynamic conditions and to compute the spares required for both periods. 

Figure 5-1 illustrates flying-hour profiles for steady-state and a 30-day war 
for three different weapon systems (aircraft) — A, B, and C. 

The flying profile for aircraft A has a steady state period followed by a 
dynamic one. This scenario is typical and is usually interpreted as a period of 
peacetime followed by the outbreak of a conflict. Our convention is that the 
steady-state period covers all the days preceding and including day zero, and 
that the dynamic period starts on day 1. The dynamic period can last up to 99 
days, with a different flying-hour program for each day if necessary. 
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Figure 5-1. 
Sample Flying-Hour Profile for Aircraft A, B, and C 

The ASM can generate and analyze requirements for one or two days speci- 
fied by the user. While it is the availabilities on these specified analysis days 
that explicitly drive the requirements calculation, the model considers activity 
over the entire period, since this activity contributes to the pipelines on the 
analysis days. For a one-day analysis, the ASM computes the spares require- 
ments to meet a user-specified availability or budget target on that day. 

For a two-day analysis, the ASM requires availability or budget targets for 
each analysis day. The model first purchases enough spares to meet the target 
on the first analysis day or — if constrained by the budget — purchases the 
spares that yield the best performance without exceeding the budget constraint. 
For the second analysis day, the model includes those spares already computed 
in support of the first day in the inventory, and it also considers any changes the 
maintenance system may undergo between the two days (e.g., a transition from 
a no-cannibalization mode to a "cannibalize-when-necessary" mode). It then 
computes the additional spares required to meet the specified second-day target 
or second-day incremental budget constraint. After processing both days, the 
model assesses performance on both days with the total quantity of spares. 
Often the availability on the first analysis day will then exceed its target because 
the model typically purchases additional spares to meet the second day's target 
over and above the spares required to meet the first day's target. Whether the 
model is performing a one-day or two-day analysis, it produces curves of per- 
formance versus cost. 

Analysis of typical scenarios, as shown in Figure 5-1, requires a judicious 
choice of analysis days.   Often a choice of day zero as the first analysis day is 
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indicated, since this would give the requirement for peacetime operations. One 
would like to identify the "worst" or most demanding day for the second analy- 
sis day so that spares sufficient to support that day are also adequate to maintain 
the required availability rate throughout the 30-day wartime support period. 
From an activity-level perspective, day 10 might be a good choice for analysis of 
Aircraft A, since its flying hours drop after that, while day 30 might be appropri- 
ate for Aircraft B. But, if the scenario involves maintenance and resupply dis- 
ruption until day 15, that day might be the best choice for all three types of 
aircraft. Trial and error is sometimes the only way to make the choice of an 
analysis day. 

A brief description of some of the more common scenarios and ASM modes 
of operation follows. 

5.1.2.1 SINGLE-DAY ANALYSIS 

♦ Steady-state conditions. This mode typically computes spares for peacetime 
conditions. The single analysis day is set to zero, and a single fleet flying- 
hour value is specified for all days of the period. 

♦ Dynamic conditions. This mode is typically used to calculate requirements 
for a wartime engagement only, often involving a deployment. All spares 
and aircraft are available at the beginning of day 1, and all pipelines are 
empty. The single analysis day is set to be the final day of the dynamic 
period, and the fleet flying-hour program for the period is specified. 
Steady-state flying hours (for those days preceding the period) are set to 
zero. 

♦ Dynamic conditions linked with steady state. This option develops spares 
requirements for wartime conditions but assumes that steady-state condi- 
tions with peacetime item failures, pipelines, and inventory requirements 
are present at the start of the war. The single analysis day is at the end of 
the dynamic period of interest. The fleet flying-hour value for each day of 
the wartime period and the steady-state flying hours are specified. 

5.1.2.2 TWO-DAY ANALYSIS 

Steady-state and dynamic conditions. This option computes requirements to 
support a period of steady-state operations followed by a dynamic period, 
(e.g., peace followed by the outbreak of war). It is implemented by a two- 
day analysis with the first day set to zero and the second day set to the end 
of the dynamic period of interest. The fleet flying-hour values for steady- 
state conditions and for each day of the wartime period are specified. (The 
ASM has the option of procuring spares for peacetime first and then procur- 
ing the additional spares to meet the wartime target next, or vice versa.) 
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♦ Two dynamic analysis days. This is the typical USAF mode of operation when 
the ASM is used to calculate requirements for deployment kits, or mobility 
readiness spares packages (MRSPs). The model computes the spares 
required for two different days in a single wartime scenario — for instance, 
the last day of the surge and the end of the war (for Aircraft A in Figure 5-1, 
this corresponds to day 10 and day 30). The model assumes that spares are 
required only for the wartime support period and that all spares and aircraft 
are available on day 1. A fleet flying-hour program for each day of the war 
is specified, and the steady-state flying hours are set to zero. There are two 
analysis days, and the model computes the requirement to meet both of 
those days' targets. 

♦ Two dynamic analysis days linked with steady state. This mode is similar to the 
preceding one, except that now steady-state conditions with their own item 
failures and pipelines are present at the start of the war. Two analysis war 
days, a fleet flying-hour program for each day of the war and the steady- 
state flying hours value are specified. This situation is typical of a unit that 
fights in place at the outbreak of a war. 

5.1.3   Initial Assets and User-Specified Spares Levels 

The ASM can accept user-specified initial asset levels in several different 
ways. In the common, zero initial asset case, the ASM determines spares mixes 
"from scratch." At the other extreme, the ASM can evaluate the performance 
and cost of a specified spares mix. 

Other options allow the specification of specific stockage objectives (e.g., an 
initial level of spares by item, already in the inventory, or a desired minimum 
level). These options permit the user, who has previously made stockage deci- 
sions concerning some or all items, to include those decisions in the model's 
solution. The user's initial levels may be items procured previously or items 
needed but not yet procured. The former — starting or initial assets — do not 
increase the costs, and the latter — user-specified buy quantities (or negotiated 
levels) — force the ASM to increase the spares cost. In the first case, the user 
may have starting assets previously paid for and may need to determine the 
incremental buy necessary to reach an availability target. In the second case, the 
user may want to force the model to buy at least a specified quantity of spares. 
The stock parameters allow the user to include those decisions. Furthermore, the 
user can specify starting assets or buys as either a minimum value, letting the 
model buy more if necessary, or as a fixed value, so that the model will purchase 
only to the user-specified level. For user-specified buy quantities, the model can 
handle some special cases (e.g., excluding the item from having an impact on air- 
craft availability, or forcing the model to buy at least a specified percentage of 
the item's total pipeline).1 

1 In earlier chapters, we referred to this as the mean, or expected, number of units in 
the pipeline. When we use the word "pipeline" here (without "mean"), it refers to the 
physical pipeline or the mean number of units in the physical pipeline. 
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5.1.4   Examples of ASM Sensitivity 

In the next several sections, we present sample results to demonstrate some 
of the model's key capabilities. We obtained these results using items from an 
USAF F-15E MRSP — a "flyaway kit" of spares that deploys with the squadron. 
We use a modified USAF F-15E database to obtain the indenture structure, 
demand rates, unit costs, NRTS rates, and other item information. Parameters, 
scenario descriptions, and selected data elements have been changed and are 
illustrative only (see Table 5-1). All items undergo one of three types of depot 
repair — some items are repaired at a local depot, some are sent to a nearby con- 
tractor for repair, and some are ordinarily repaired at a remote source that will 
be cut off during war. (The third source is not typical of USAF operations, but it 
is common for many other countries.) For convenience, we set repair and ship- 
ping times and condemnation rates constant across items (DRT, BRT, OST, and 
ConPCT, respectively). 

Table 5-1. 
Resupply Assumptions for F-15E Spares Kit 

Type of 
depot repair 

DRT BRT 

OST 
(days) ConPCT 

Per- 
centage 
of items 

Peace 
(days) 

War 
(days) 

Peace 
(days) 

War 
(days) 

Type 1 - local 

Type 2 - contractor 

Type 3 - foreign 

60 

100 

180 

10 

15 

Infinite 

14 

14 

14 

3 

3 

3 

1 

1 

1 

0.05 

0.05 

0.05 

50 

40 

10 

Note: Kit contains 275 LRUs and 406 SRUs. 

5.2  OPTIMIZATION WITH MULTIPLE LEVELS 

OF INDENTURE 

Each aircraft has an indenture structure. Aircraft are composed of LRUs, 
LRUs are composed of SRUs, SRUs are composed of lower indenture SRUs, and 
so on. The ASM develops the optimal balances between procuring LRU and 
SRU spares. Since the indenture structure can have a great impact on the spares 
mix, it is important to specify that structure correctly. 

Consider three different aircraft, each consisting of the same five items (with 
the item pipelines and costs displayed in Table 5-2), but each having a different 
indenture structure. 

♦ Aircraft A — One level of indenture, and all five items are LRUs. 

♦ Aircraft B — Two levels of indenture, with item #1 an LRU and the other 
four items SRUs. 
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♦ Aircraft C — Three levels of indenture, with item #1 an LRU, items #11 and 
#12 second-indenture-level SRUs, and items #21 and #22 third-indenture- 
level SRUs (under item #12 in the indenture structure). 

Table 5-2. 
Spares Mixes for Three Different Indenture Structures 
($2,000 Investment) 

Aircraft A — Aircraft B — Aircraft C — 
1 level and 2 levels 3 levels 

Cost all LRUs with 1 LRU with 1 LRU 
ltem# Pipeline (dollars) (spares) (spares) (spares) 

1 3.0 1,000 1 2 1 

11 1.0 400 1 0 1 

12 1.0 300 1 0 2 

21 0.5 150 1 0 0 

22 0.5 150 1 0 0 

Note: In the table, "pipeline" refers to pipeline not including the AWP segment shown in Equation 4-35. 

Each item's pipeline gives a rough measure of its need for stock; we 
explained how item backorders (and therefore aircraft availability) depend on 
the pipeline and the spares level in Chapters 2 and 3. Note that, for Aircraft B 
and Aircraft C, the sum of the costs (and the pipelines) of the lower indenture 
items equals the cost (and pipeline) of their parent. We have chosen the item 
characteristics this way so that the differences in the spares mixes for Aircraft A, 
B, and C reflect differing indenture structures (rather than differences in costs or 
pipelines). 

As shown in Table 5-2, if all the items are LRUs (Aircraft A), the optimal mix 
for $2,000 is one unit of each. If only item #1 is an LRU (Aircraft B), the best 
expenditure of $2,000 is to buy two units of item #1. This reflects the fact that 
SRU backorders have a lesser effect on aircraft availability than LRU backorders. 
Aircraft C has the most complicated indenture structure, and the best $2,000 
spares mix reflects a compromise. SRU #12 is selected for an additional spare 
because it is less expensive than SRU #11 and with the addition of AWP delays 
for items #21 and #22 to its pipeline, has a larger pipeline; it provides a greater 
benefit per dollar. 

As the levels of indenture increase, keeping total spares cost constant, the 
performance improves. Increasing the number of levels of indenture from one to 
two changed the number of types of LRUs in the spares mix from five to one, as 
shown in columns 4 and 5 of Table 5-2, and improved the ENMCS figure from 
2.94 to 2.75, as shown in rows 1 and 2 of Table 5-3. In the latter case, there are 
fewer items that can directly ground the aircraft. Increasing the number of levels 
of indenture from two to three also reduces ENMCS because moving two SRUs 
to a third level of indenture adds another buffer layer between their failures and 
backorders and grounding an aircraft. However, the effect is less sig- 
nificant; reducing the number of LRUs, whose backorders ground aircraft, 
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matters more than moving some SRUs from the second to the third level of 
indenture. 

Table 5-3. 
Comparing Performance for Three Different Indenture Structures 

Indenture Total cost 
Aircraft structure (dollars) ENMCS EBOs 

A 1 level 2,000 2.94 3.18 

B 2 levels 2,000 2.75 2.95 

C 3 levels 2,000 2.72 2.93 

In this example, the sum of the SRU costs equaled the LRU cost. If SRUs 
had a cost advantage, we might buy more SRUs. This is shown in Table 5-4 for 
two levels of indenture. In the right-hand case (columns 5 and 6), it was more 
economical to improve support by reducing the LRU pipeline (with more SRUs 
to reduce SRU delay) than to buy more LRUs. Since less expensive parts are 
more cost-effective in improving availability, ENMCS also improves. The oppo- 
site effect would occur if the LRU were cheaper than the sum of its SRUs. 

Table 5-4. 
Comparing LRU/SRU Spares Mix with Respect to Cost 

Total SRU cost 
equals LRU cost 

Total SRU cost 
is less than LRU cost 

Item #          Pipeline 
Cost 

(dollars) Spares 
Cost 

(dollars)              Spares 

1 3.0 1,000 2 1,000 1 

11 1.0 400 0 200 2 

12 1.0 300 0 150 2 

21 0.5 150 0 75 2 

22 0.5 150 0 75 2 

Total cost $2,000 $2,000 

Total ENMCS 2.75 2.27 

The mix of spares changes in a similar manner if we double each SRU pipe- 
line by doubling its demand. Table 5-5 shows that the model computes a larger 
SRU requirement to compensate for their greater number of failures. 
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Table 5-5. 
Comparing LRWSRU Spares Mix with Respect to Pipeline 

Sum of SRU pipelines 
equals LRU pipeline 

Sum of SRU pipelines 
is greater than LRU pipeline 

Cost 
Item #             (dollars) Pipeline Spares Pipeline Spares 

1 

11 

12 

21 

22 

1,000 

400 

300 

150 

150 

3.0 

1.0 

1.0 

0.5 

0.5 

2 

0 

0 

0 

0 

3 

2 

2 

1 

1 

1 

2 

2 

2 

2 

Total cost $2,000 $2,000 

Total ENMCS 2.75 3.78 

Thus spares requirements depend on the relationship between the LRU and 
its SRUs in terms of cost and demand. That relationship varies from LRU to 
LRU. Sometimes the LRU is more expensive than its SRUs combined, sometimes 
less expensive. Sometimes it has a greater demand, and sometimes a lesser 
demand than its SRUs. In our F-15E database containing only reparable items, 
the total SRU costs, summed across all SRUs on a particular LRU (each SRU's 
cost multiplied by its QPA), divided by the LRU cost, ranged from 0.07 to 10.41, 
averaging 0.87. In other words, while the total SRU cost averages 87 percent of 
the LRU cost, the total SRU cost may be much greater or may be much less than 
that of the LRU. Table 5-6 shows data comparing SRU cost and demand to LRU 
cost and demand. 

Table 5-6. 
F-15E Relationship Between LRU and Its SRUs 

Comparison: 
SRUs vs. LRUs Average Minimum Maximum 

Sum of SRUs vs. LRU cost 

Sum of SRUs vs. LRU demand 

Number of SRUs on the LRU 

0.87 

1.26 

7.80 

0.07 

0.17 

1 

10.41 

7.80 

25 

Note: F-15E database for the 54 LRUs with SRUs. 

The ASM balances spares levels based upon the various LRU/SRU relation- 
ships as well as the item characteristics. If SRUs are expensive with less 
demand, then fewer SRUs are selected, and vice versa. This is not an all-or- 
nothing situation. The best mix is not made up only of LRUs or only of SRUs but 
consists of some of each. Even if an SRU is inexpensive, its spares can only 
reduce the AWP portion of the LRU pipeline.   It may be preferable to buy an 
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LRU that costs more than its SRUs, but which has a greater effect on aircraft 
availability. Thus buying a large number of a inexpensive items may not be 
advantageous; the model must explicitly determine the proper mix between the 
LRUs and SRUs. 

5.3  THE EFFECTS OF CANNIBALIZATION 

The ability to consolidate broken LRUs onto a single aircraft greatly 
improves aircraft availability without increasing procurement costs. The disad- 
vantage of cannibalization is that first-line maintenance actions increase. Canni- 
balizing a part requires the additional steps (and risk) of borrowing items from 
other NMCS aircraft and then reinstalling them later when the backorder is 
filled. In this section, we give examples comparing model runs with and with- 
out cannibalization and using various objective functions described in Chapter 4. 
We limit the discussion to the case where the model is run for a single analysis 
day, so that the run either does or does not use cannibalization; two-analysis- 
day runs are discussed in Section 5.4. 

5.3.1    Cannibalization with ENMCS Optimization 

In this section, we describe the effects of cannibalization under ENMCS 
optimization and the sensitivity of those effects to model inputs; we discuss can- 
nibalization under other objective functions in Section 5.3.2. 

We have already mentioned that cannibalization raises aircraft availability 
for a given cost. But it is also true that, for a given availability, as the degree of 
cannibalization increases, so does the number of expected backorders. To reach 
a given availability target, fewer spares are required, but since the number of 
failures is the same, there will be many failures that do not ground aircraft but 
still create backorders. Moving from a no-cannibalization run to one with canni- 
balization also reduces the bias toward buying low-cost items in the optimiza- 
tion process. We discuss this further in our explanation of sample model runs 
below. 

Two model inputs with a significant effect on the number of cannibalization 
actions are the NMCS target and item QPAs. Larger NMCS targets permit more 
cannibalization; since cannibalization is free (from a procurement perspective),2 

the model uses it to reduce NMCS aircraft.3 To see why each item's QPA has an 
impact on the degree of cannibalization, consider an item with a QPA of three. 

2 Backorders and maintenance actions are increased by cannibalization, and may be 
viewed as costs. 

3 The use of different NMCS targets may result in different costs to achieve the same 
availability or ENMCS. The results of this section cannot be generalized to comparisons 
of all kits with regard to the projected amount of cannibalization. 
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This item has potentially three times as many parts available to be installed on 
an aircraft NMCS for the item than does an item with a QPA of one. 

To demonstrate the difference between model results with and without can- 
nibalization, we used the F-15E sample kit for a single day under steady-state 
conditions. We ran the model with ENMCS optimization and NMCS targets of 
2, 4, and 6 (or an availability of 90, 80, and 70 percent, respectively, assuming 20 
aircraft) with and without cannibalization. To reach the same target, the 
three cannibalization runs respectively spent 12, 39, and 64 percent less money 
(see "% delta $" in Figure 5-2) than did the three runs without cannibalization. 
But cannibalization created 4, 221, and 372 more backorders (or more mainte- 
nance actions) for the three runs. Thus as the allowable number of NMCS air- 
craft increases, the model assumes that more spare parts are cannibalized from 
those broken aircraft, so that fewer spares are needed to reach the target; how- 
ever, there is a greater penalty in the form of more maintenance actions. 
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X-axis NMCS=2 NMCS=4 NMCS=6 
S% delta $ 12 39 64 
□ Delta EBO 4 221 372 

Figure 5-2. 
Differences in Cost and EBOs Between Cannibalizing 
and Not Cannibalizing for Three NMCS Targets 

In the model run with a NMCS target of 4, items with the largest QPA had 
the largest reductions in spares levels. Each NMCS aircraft makes a QPA's 
worth of spares available for cannibalization. Table 5-7 shows results from that 
run for the 20 items that demonstrated the largest reduction in spares levels (lev- 
els without cannibalization minus the levels with cannibalization) as well as the 
item's QPA. 
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Table 5-7. 
Reduction in Levels Resulting from Cannibalization 
(20 Items with Greatest Change) 

Items 1 2 3 4 5 6 7 8 9 10 

Decrease in spares level 54 51 44 43 38 38 17 10 8 8 

QPA 30 30 30 30 30 30 8 4 4 4 

Decrease/QPA 1.8 1.7 1.5 1.4 1.3 1.3 2.1 2.5 2.0 2.0 

Items 11 12 13 14 15 16 17 18 19 20 

Decrease in spares level 8 7 7 7 6 6 6 6 6 5 

QPA 3 4 3 4 2 2 2 2 2 2 

Decrease/QPA 2.7 1.8 2.3 1.8 3.0 3.0 3.0 3.0 3.0 2.5 

To approximate the number of aircraft stripped for spares, we use the 
decrease in the spares level divided by the QPA. This ratio estimates the number 
of additional aircraft fully cannibalized. For instance, if the item spares level 
changes from 10 without cannibalization to 4 with cannibalization and the item 
QPA is 3, then the item's ratio is 2 — a rough estimate of the additional aircraft 
that are stripped of this item. The ratio ranged between 1.3 and 3 for the 20 
items. So, on average, cannibalization uses between 1.3 and 3 aircraft as a source 
of spare parts to give an ENMCS of 4. 

Comparing individual component spares levels shows a tendency for opti- 
mization under cannibalization to increase the levels of high-cost spares when 
the total investment is kept constant. In general, of course, one reaches a given 
performance for a reduced investment when cannibalization is practiced, and so 
item levels overall tend to decrease. When investment is held constant, how- 
ever, buying under cannibalization tends to reduce cost minimization's inherent 
bias toward low-cost items. At each buy in generating the benefit-versus-cost 
curve under cannibalization, the item with the largest expected backorders per 
QPA effectively determines availability. Buying spares of other items yields lit- 
tle benefit,4 unless the number of aircraft down for this item (the "long pole in 
the tent") can be reduced, whatever its cost. 

Table 5-8 shows two $40 million spares mixes, one derived allowing canni- 
balization, and one not. Allowing cannibalization increased the spares levels of 
71 components, which were relatively high-priced (average $115,000), while 
reducing the spares levels for 285 components lower cost components (average 
$12,000). 

4 These items have smaller expected backorders per QPA than the first item, but there 
is still a positive probability that they have more backorders per QPA than that item. 
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Table 5-8. 
Changes to Spares Mix Resulting from Cannibalization 
($40 Million Investment) 

Effect of 
cannibalization 

Percentage 
of items 

Number 
of items 

Number 
of spares 

Average cost 
of a spare 
(dollars) 

Average 
QPA 

by item 

Model buys more 

Model buys less 

10 

42 

71 

285 

86 

846 

115,000 

12,000 

2.0 

1.5 

In summary: 

♦ Cannibalization significantly reduces the spares budget required to reach a 
particular availability, or improves availability for the same cost. 

♦ As the NMCS target increases, both budget savings and the maintenance 
penalty of cannibalization increase relative to the no-cannibalization case. 

♦ The mix of spares with cannibalization tends to include a few more expen- 
sive spares (with low QPA) and far fewer inexpensive spares (with high 
QPA) than does an equal cost mix derived without cannibalization. 

5.3.2   Cannibalization with Confidence or ENMCS/EBO 
Optimization 

Recall from Chapter 4 that, when cannibalization is allowed, the ASM can 
build spares mixes using three objective functions — confidence, ENMCS, and 
EBO/ENMCS: 

♦ Confidence optimization maximizes the probability that the number of air- 
craft NMCS is not greater than a given target D. This probability is often 
called the confidence of meeting the target D, and marginal analysis to 
maximize this confidence is called confidence optimization. 

♦ ENMCS "optimization" considers the confidence for all possible NMCS val- 
ues and optimizes a weighted sum of them. 

♦ EBO/ENMCS "optimization" considers two measures of performance, 
ENMCS and EBOs, and attempts to optimize both simultaneously. 

Table 5-9 displays the results of four model runs, all using the same input 
and same NMCS target of 4 but each using a different objective function. In the 
"no cann" case, the only optimization technique is the availability optimization 
discussed in Chapter 2; the results of this case are displayed on the far left (that 
case and the ENMCS case results were described in detail in Section 5.3.1).  As 
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one moves from left to right in the table, the degree of cannibalization increases, 
accompanied by a decrease in spares costs (except between the last two columns) 
and an increase in EBOs. 

Table 5-9. 
Results of Different Optimization Techniques 
(NMCS Target = 4) 

X-axis No cann EBO/ENMCS ENMCS Confidence 

Buy cost 

Confidence 

EBOs 

66.7 

64 

4 

41.3 

74 

63 

40.5 

74 

225 

40.8 

76 

259 

While maximizing confidence is not the same as minimizing ENMCS, the 
spares mix, achieved confidence, and achieved ENMCS are not strikingly differ- 
ent with the two optimization methods (columns 4 and 5). A spares mix built 
using confidence optimization normally yields a slightly higher confidence level 
(but also a slightly higher cost and significantly more expected backorders). 

Although using the ENMCS objective produces the lowest cost solution, its 
maintenance workload (as indicated by the number of expected backorders) is 
high. Choosing the EBO/ENMCS objective (column 3) develops a compromise 
spares mix that costs slightly more than that resulting from using a pure ENMCS 
objective but yields significantly fewer expected backorders. 

In Section 5.3.1, we described in detail the differences between no cannibali- 
zation and cannibalization at the item level under ENMCS optimization. The 
two other optimization methods (EBO/ENMCS and confidence) assume 
cannibalization, and produce item-level effects similar to those of ENMCS opti- 
mization. Figure 5-3 demonstrates that point. To make that comparison, we esti- 
mate, as before, the number of aircraft cannibalized by taking the item spares 
level assuming cannibalization subtracted from the item's level assuming no 
cannibalization, divided by the item QPA. We display the number of additional 
(compared to the "no cann" case) aircraft cannibalized under each optimization 
method. The bars labeled "maximum" refer to the maximum, across items, of 
the number of additional aircraft NMCS for an item. The bars labeled "average" 
refer to the average increase in the number of aircraft NMCS for an item, again 
taken across items. 
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Figure 5-3. 
The Effect of Optimization Method on the Number of Aircraft 
Cannibalized in a 20-Aircraft Fleet 

It is interesting to compare Table 5-9 with Figure 5-3. Moving from 
EBO/ENMCS to ENMCS to confidence as the optimization methods gives a 
fourfold increase in expected backorders and associated cannibalizations and 
maintenance, while the average number of aircraft cannibalized increases only 
slightly. 

In the next section, we will develop a spares mix assuming a period of peace 
followed by a war, with no cannibalization in peace and full cannibalization in 
war. When a spares mix is based on two model runs (two analysis days), one of 
which does not allow cannibalization and one that does, the difference in results 
between the optimization methods is minimal. The no-cannibalization model 
run will buy spares with the goal of driving down EBOs, and the optimization 
methods used in the run with cannibalization differ primarily in their achieved 
EBOs; both the achieved confidence and ENMCS differ little between methods. 

5.3.3   Availability Curves 

It is useful to have the model display an availability-versus-cost curve show- 
ing the cost of achieving all potential availability (ENMCS) targets. Such curves 
are available, with some caveats. For runs without cannibalization, and for runs 
with cannibalization that use confidence optimization, the curves are completely 
optimal. That is, at each point on the curve, the cost is the minimum possible to 
achieve that no-cannibalization availability (or full-cannibalization confidence). 
The curves for an ENMCS objective and for the ENMCS/EBO objective do not 
guarantee optimality. Further, the spares mix depends upon the NMCS target, 
and the "quality" of the mix is degraded at points far from the target. 
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Figure 5-4 is a plot of three curves from model runs with NMCS targets of 2, 
4, and 6. Notice that, in general, the curves are close and even coincide with 
similar ENMCS values for the same cost. However, at any cost value where the 
achieved ENMCS on one curve is significantly different from the target for that 
curve, and where the achieved ENMCS on a second curve is close to the target 
for that second curve, the two curves are separate. For these cost values, the 
curve whose achieved ENMCS is closest to its target is preferred (i.e., the second 
curve). Thus if one enters a NMCS target and a budget constraint, and the 
resulting ENMCS output is significantly different from the input NMCS target, 
one should rerun the model with a new NMCS target equal to the ENMCS 
result. By experimenting with the target, one can also cause the model to com- 
pute the spares mix that gives the lowest possible ENMCS for a specified cost. 
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Figure 5-4. 
ENMCS-vs.-Cost Curves for Three NMCS Targets 

5.3.4   Other Model Options 

Several other model options affect the spares mix. One option forces the 
system to have at least as many spares as an item's pipeline — a simple way of 
reducing backorders when assuming cannibalization. Another option forces the 
model to buy at least as many spares as the pipeline for high-QPA items, which 
under cannibalization normally would not require spares. All options have their 
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advantages and disadvantages, and all of them can be used to tailor the model to 
the needs and policies of the logistics system being modeled. 

5.4  DYNAMIC FLYING-HOUR PROGRAMS 

To determine requirements or evaluate support for a dynamic scenario such 
as war, the analysis should focus on the logistically most demanding day. Usu- 
ally that is the last day of the wartime support period; however, for scenarios 
with an initial surge or a significant drop in flying hours over time, the best 
analysis day is less certain. To demonstrate that point, we ran the model under a 
typical scenario with our demonstration database. The flying-hour profile started 
with steady-state conditions of 10 hours a day, moved to a surge period of 60 fly- 
ing hours a day, and then leveled off at 40 hours a day after day 5. Figure 5-5 
displays the flying-hour profile and the resulting ENMCS plotted for various 
days of the war. ENMCS worsened over the surge period and then improved 
(dropped) once the surge ended. With this scenario, the lowest availability was 
projected to occur at the end of the surge period (day 5), making that day a good 
choice for the analysis day; even with flying hours dropping by a third, the 
ENMCS results varied only by half an aircraft or a few percent in availability 
after the fifth day. 
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Figure 5-5. 
ENMCS Over a Period of Dynamic Flying Hours 
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5.5  SPARES MIXES FOR PEACE AND WAR 

Sometimes a user wants to develop a spares mix for peace and war, as 
described in Section 5.1.2. The flying-hour profile is originally steady state, fol- 
lowed by a dynamic period during which flying hours vary day by day. 

To develop a peacetime and wartime spares mix, the user must enter the 
availability or budget targets for each analysis period and then run the model. 
The model purchases enough spares to meet the first target and next purchases 
additional spares to meet the second target. After processing both days' parame- 
ters, the ASM returns to the first analysis day and recalculates performance with 
the total quantity (a shopping list) of spares purchased to support both periods. 

In other words, the ASM does not perform a simultaneous integrated spares 
computation but instead does one day at a time. Thus there is some flexibility in 
operating the model. One can first develop a mix of spares for peace and then 
add to that mix to support a wartime scenario, or one can develop a spares mix 
for war first (still assuming the peacetime flying hours) and then add to that mix 
to reach the peacetime availability target. Although this order is counterintuitive 
(since it is not chronological), it may produce a better spares mix. The recom- 
mended way to operate the model (peace, then war — or war, then peace) is to 
run the dominating or most demanding day first (i.e., the day on which it costs 
the most to achieve a target availability). 

Again consider the F-15E sample kit (see Table 5-1). Suppose that the 
20-aircraft fleet flies 10 hours per day and that maintenance does not perform 
cannibalization in peacetime. For wartime operations, assume 40 flying hours 
on day 1, 60 hours per day for the rest of the war, and that maintenance does 
cannibalize. 

Figure 5-6 displays the availability-versus-cost curve for peace and war, 
with peacetime availability for day 0 and wartime availability for day 24. If the 
total budget is spent preparing for peacetime operations, the peacetime curve in 
Figure 5-6 is the best result the model can obtain. The wartime curve also repre- 
sents the best results the model can obtain, although as explained earlier, the 
wartime curve is really composed of several curves produced by several model 
runs assuming different NMCS targets, and is only approximately optimal. The 
same dollars produce much higher wartime than peacetime availability (i.e., 
peace is the more demanding period) for expenditures under $70 million, mostly 
because the wartime scenario assumes cannibalization, so there is an additional 
source of spares in war. After the $70 million point on the curve, peacetime per- 
formance exceeds that of war because, for high availabilities, little cannibaliza- 
tion can be done and other factors become the drivers (e.g., greater flying hours 
or repair times). 
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5.5.1   Meeting Availability Targets for the Lowest Cost 

In developing a peacetime and wartime spares mix, the relationship of the 
individual peacetime and wartime curves is critical. At an availability that costs 
more to achieve in peace than war (peace dominates war), the spares mix for 
peacetime should be laid in first to focus on reaching the more difficult target for 
the least cost. Suppose the target is 80 percent availability for both peace and 
war. Peace dominates war, since peacetime operations require $66.7 million to 
reach the 80 percent availability target, while wartime operations require only 
$51 million (as shown by Figure 5-6). 
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Figure 5-6. 
Peacetime and Wartime Availability — Cost Curves Plotted Separately 

We then take the $66.7 million in assets needed to reach 80 percent availabil- 
ity (see Table 5-10) in peacetime operations and see that those assets do support 
wartime operations. We evaluate the $51 million in assets, which is enough to 
maintain 80 percent availability in wartime operations, and find that it is insuffi- 
cient to achieve 80 percent availability in peacetime. In fact, to do so, the mix 
must be supplemented by $15.7 million. Thus the first option produces a lower 
cost mix (by $1.5 million) and supports both wartime and peacetime operations 
at the required availability. 

5-19 



Table 5-10. 
Example: When Peace Dominates, with an 80 Percent 
Availability Input Target for Peace and War 

Type 
of model run 

Achieved availability 
(percent) 

Cost 
($ millions) 

Peace War Peace War Total 

Peace, then war 80 80 66.7 0 66.7 

War, then peace 80 85 17.0 51 68.2 

5.5.2   Meeting a Fixed Budget Constraint 

Suppose the same scenario as before, but now with a budget constraint of 
$50 million. The question is how to split that $50 million between peace and 
war. As with the previous example, we first bound the problem by determining 
the consequences of allocating the entire $50 million to develop the optimal mix 
for peace or, alternatively, allocating it all to best support wartime operations. 
Table 5-11 displays those extremes, which greatly reduce the options. For this 
example, unless the wartime scenario is solely important, it would be unwise to 
put all of the money there, because peacetime availability drops to zero. On the 
other hand, the peacetime spares mix performs well in war. By first bounding 
the problem and then running a few compromise solutions that vary the budget 
split between war and peace, the user should be able to achieve a suitable com- 
promise spares mix. 

Table 5-11. 
Example: Bounding the Peace and War Availabilities 
for a $50 Million Budget 

Type 
of model run 

Achieved availability 
(percent) 

Cost 
($ millions) 

Peace War Peace War Total 

Peace, then war 

War, then peace 

45 

0 

69 

80 

50 

0 

0 

50 

50 

50 
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6.0 Initial Provisioning 

A version of the ASM determines spares requirements in a special case 
— initial provisioning. Much of the development was done under the sponsor- 
ship of the Israel Air Force, and resulted in a variant of the ASM called 
ISAAC — Initial Spares Aircraft Availability Calculation. Some of the adapta- 
tions we made to the model to handle initial provisioning are discussed in this 
chapter; other matters concerning the actual model operations are documented in 
a formcoming LMI report [Kline, et al.]. Initial provisioning is the process of pro- 
curing spares in connection with the procurement of a new weapon system, or 
with procurement of additional units of a weapon system already in the inven- 
tory. The purpose of these spares is to support the new system over some initial 
"coverage" period until the standard spares replenishment system can begin to 
provide support. The ASM addresses three basic questions pertaining to initial 
provisioning: Which spares should be ordered within a specific coverage period 
(given a constrained budget or availability target)? When should they be 
ordered? How should funds from the total budget be obligated over time? 

The major changes required to address the coverage period are in accounting 
for condemnations and estimating annual budgets for the coverage period. We 
must also incorporate common components (i.e., the economies of scale made 
possible when the aircraft undergoing initial provisioning has parts in common 
with previously procured aircraft). 

6.1   INITIAL PROVISIONING TIME FRAME 

Figure 6-1 presents an example of the model's approach for estimating initial 
spares procurement. The figure displays two key periods: 

♦ Coverage period — the period from the time the first aircraft arrives to the time 
the standard replenishment system can begin to provide spares support. 

♦ Ordering and budget period — the period in which to allocate funds and order 
the spares so they arrive on time. (We assume that the user incurs costs and 
must provide budget authority when the order is placed.) An annual pro- 
curement equals the cost of all orders placed in a given year (the buy cost). 
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*"^ = Aircraft delivery. 

Figure 6-1. 
Time Frame for Initial Provisioning 

Figure 6-1 shows an initial provisioning coverage period of 3.5 years with the 
aircraft delivered in 1998. Thus the coverage period begins on the first day of the 
year the aircraft are to be delivered (1998) and ends 3.5 years later, or midway 
through 2001. The model estimates the aircraft availability at the end of the cov- 
erage period, so we must procure enough spares to provide support over that 
period. 

The user specifies the coverage period by entering its length and the year that 
the aircraft will be delivered. The model determines the initial provisioning 
ordering and budget period using the aircraft delivery year and each item's pro- 
curement lead-time total (PLTT). We initially assume that all spares arrive in the 
aircraft delivery year and that their impact on budgets is one PLTT in advance of 
their delivery, at the time the order is placed (as is shown in Figure 6-1). The start 
of the ordering and budget period occurs a maximum component PLTT before 
delivery of the aircraft, and it ends the year before aircraft delivery. In our exam- 
ple, if the longest PLTT of all the items is three years, the ordering and budget 
period begins in 1995 and ends in 1997. 

6.1.1   Flying Hours in a Coverage Period 

Figure 6-2 is a nominal example of a flying-hour scenario. In this example, 
the only year in which flying hours change is the delivery year (the hours change 
over that year because not all of the aircraft are delivered simultaneously). We 
make a key simplifying assumption that aircraft delivery is spread out evenly 
over the year. Thus, the first year has only half as many cumulative flying hours 
as each of the following years. The result is that the number of years of flying is 
the coverage period less half a year (what we will term a "steady-state coverage 
period").  The user may also specify a war (dynamic period) occurring after the 
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coverage period. In that case, the model will compute the spares requirements 
for the war and add those to the requirements generated to support the aircraft in 
the coverage period. 

Flying hours 

1998 1999 2000 2001 2002 

= Aircraft delivery. 

Figure 6-2. 
Nominal Flying-Hour Program for Initial Provisioning 

6.1.2   Condemnations in a Coverage Period 

In Chapter 3's description of pipelines for steady state and dynamic flying 
hours, the model looks back a PLTT to calculate the condemnation pipeline. Such 
is the case for three items with PLTTs of 2, 3, and 4 years in the top of Figure 6-3. 
Since PLTT is not usually equal to the coverage period, this pipeline must be cal- 
culated carefully. For items with PLTT greater than the coverage period, the 
number of items in the condemnation pipeline is only those corresponding to 
condemnations in the coverage period.1 For items whose PLTT is less than or 
equal to the coverage period, the mean pipeline is computed, as usual, as the 
mean number of condemnations in the PLTT. If PLTT is strictly less, there may 
be condemnations early in the coverage period not included in the pipeline. 
These early condemnations must be included as a requirement. 

1 The ASM actually computes this by setting PLTT equal to the coverage period (for 
this computation only). 
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Standard mode assumptions 

Item 1 PLTT = 2 years 

Item 2 PLTT = 3 years 

Item 3 PLTT = 4 years 

Look back from I 

Early condemnations Item 1 PLTT = 2 years 

Item 2 PLTT = 3 years 

Item 3 PLTT = 4 years 

Year 2 Year 3 

Coverage period 

Figure 6-3. 
How Coverage Period Adjusts PLTT 

We procure spares to cover these condemnations as a sunk cost without 
applying any marginal analysis criterion or calculating any safety level for it. 
(Without this buy, the projected spares level would be negative.) This fixed buy, 
together with the projected condemnations in the PLTT, thus accounts for all the 
projected condemnations in the coverage period. Safety level is calculated only 
for condemnations in the PLTT. 

An "operating requirement" is based on the desired availability at the end of 
the coverage period. This, in turn, is based on the pipelines at that point (base 
repair, order and ship, depot repair, and condemnation) and the associated safety 
level. The early condemnation requirement is added to the operating 
requirement to obtain the total provisioning requirement. Note that there is no 
need for a safety level requirement for the early condemnations. If they vary 
from the expected number, we will have that information a PLTT before the end 
of the coverage period and can react by adjusting the procurement, if necessary. 

6.2  COMMON COMPONENTS 

Common components are components common to both the initial provision- 
ing aircraft and other aircraft already procured. For example, a component on the 
initial provisioning aircraft, series F-15X, might also be on the existing F-15C and 
F-16D. Treatment of common components must apply any surplus stock already 
in the inventory toward the requirement and must consider economies of scale. 
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Since stock is already available for other aircraft, the new aircraft will need less 
inventory than they would if the component were not common. The ASM uses a 
simple approximation to incorporate those benefits by calculating the number of 
"free assets": assets available to the weapon system without procurement cost 
because of its commonality. 

Table 6-1. 
Treatment of Common Component 

Basis of spares levels Pipeline 
Safety stock 
(calculated) 

Spares 
requirement 

F-15C and F-16D (existing) 

NewF-15X 

Without considering common components 

Considering common components 

16 

9 

25 

4.5 

7.5 

28a 

14 

42 

33 

Note: Safety stock is 1.5 standard deviations, or 1.5 times the square root of the mean (pipeline). 

"Assets for F-15C and F-16D consist of pipeline quantity of 16 plus 12 additional spares. 

Suppose that a new item being procured during initial provisioning for the 
F-15X has a pipeline of 9. That item already exists in the inventory for the F-15C 
and F-16D, with a pipeline of 16 and an asset position of 28. We assume that the 
variance-to-mean ratio of demand is 1, and that the model usually requires about 
1.5 standard deviations of the pipeline quantity for a safety level, so the model 
spares requirement for the new item alone, without considering commonality, is 

14 spares I 9 + 1.5 J¥ rounded . Alternatively, the total model spares require- 

ment for the common component with a comparable safety level is the sum of the 

two pipelines plus 1.5 standard deviations, or 33 9 + 16 + [l.5v9 + 16 1 . In con- 

trast, if the model did not consider common components, the total inventory 
requirement would be 42 (28 existing assets and 14 initial provisioning items) 
instead of 33. Thus, the common component's economy of scale generates 9 free 
spares (42 - 33), reducing the initial provisioning procurement to only 5 spares 
and bringing the total to 33 (28 assets and the cost of 5 spares). Therefore, we 
give the F-15X common component 9 free spares, correctly approximating the 
impact of common components, and permitting them to be considered properly 
in budget and availability calculations. 
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Marginal Analysis 

Marginal analysis is applied in several ways in the Aircraft Sustainability 
Model (ASM) to develop optimal spares mixes. In this appendix, we present a 
general proof of the optimality of marginal analysis and demonstrate its applica- 
tion to several problems in developing optimal inventory mixes. 

Let [«(i)]™! denote a particular array of nonnegative integers, which we will 
call the initial level. In relation to the initial level, define the set {(s)} of all inte- 
ger arrays (s,) with the property that s{ > n(i) for each i. We will call each such 
array a level. Let {c,} for i = 1,..., m denote a set of positive real numbers, which 
we will call costs. For any given level (s,), we can define its total cost C, in relation 
to the initial level, by the equation 

C = Z[s, - n(i)] x d. 
i 

Next, suppose that we have functions/ such that/^S;) is defined for all possible 
values of s, and such that the difference functions 

di(sl)=fi(ßi)-f,(si-l) 

are all positive and decreasing: 

0 < di(n + 1) < di(n) 

for all n. 

For all i and all n, define sort values {v,(«)} by 

3,-(n) vt(n) = 
C{ 

Form the ordered list L consisting of the v^n) in descending order. Let Lc denote 
any initial section of the list L, where C is the sum of the costs c, that appear in 
the section. Define the level (s;) by s; = mir where mi is the maximum value of n 
appearing in the sort values y,(n) in the sublist Lc. 

We claim that the level (s;), as defined above, has total cost C and that, if 
(s; 0 denotes any other level with total cost equal to or less than C, then 

Z/Ks.O^E/.Cs,)- [Eq.A-l] 
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PROOF 

In other words, for the various possible total costs defined by the initial sections 
of the list L, the levels (s) represent undominated solutions to the problem of 
maximizing the sum 

X /,(*,) 
i 

for cost C. 

Decreasing differences and the ordering of L (and therefore Lc) ensure that 
vfy") is included in Lc for each; such that 

nii) + 1 < j < nii. 

This means that for each i there are exactly mj - n(i) elements in the list La and 
therefore 

X [s, - n(i)]Ci = X [mt - n(i)] c, = C. 
i i 

So the level (s,) does have total cost C. 

Now let (s, 0 be any other level with total cost 

I,[s{'-nmc,<C. 
i 

Let Ac denote the set of sort values associated with the level (s,') defined as fol- 
lows: 

Ac = {Vi(k): n{i) + 1 <k<Si',i = l,...,m}. 

From the construction of Lc and Aa it follows that: 

X tf(s,) -/, Mm = X vt(j) cif [Eq. A-2] 
i i-c 

and 

X {fi(Si 0 -/MO]} = X ^Wc-. [Eq. A-3] 

We can rewrite 

X Vi(k)Ci 
Ac 
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as 

X Vi(k)Ci = 2 Vi(k)d + 2 o<(fc)c,-, 

where A" is the set of sort values common to Ac and Lc, while A'c is the set of 
sort values in Ac but not in Lc. Since Lc is an initial section of the list L, it follows 
that 

max Vi(k) < min u,-(/'). 

Thus 

2 p,-(fc)c,- < min Vi(j) £ c, + 2 o«(fc)c,-. [Eq. A-4] 
AC 

Lc A'c A"c 

Since the total cost of (s,') is less than or equal to C, it follows that 

Xc^Ec, [Eq.A-5] 

where V is the set of sort values that are in Lc but not in Ac. Thus, Equation A-4 
becomes 

X Vi(k)Ci < minü,-(/) 2c, + X Vi(k)Ci 
Ar LC V r A" r 

L'r 

min ü,-(/) 
Lc 

< Ey,(/)c"+2ü,(fc)c, 

=  IPi(/)Ci. 

c, + X Vi{k)Ci 
A" c 

tc 

Applying this last inequality to Equations A-2 and A-3 yields Equation A-l: 

Z/,(s,0< ZMsd, 
i i 

completing the proof. 

Note that not only are marginal analysis solutions optimal for obtaining 
maximum returns for a given cost, they are also optimal for identifying mini- 
mum cost to achieve a given return. To see this, note that for any level (s,') with 
total cost strictly less than C, the inequality in Equation A-5 would be strict, mak- 
ing the inequality in Equation A-l strict, which means that the cost C is minimal. 
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Note also that marginal analysis can be applied to minimizing a sum subject 
to a cost constraint. In that case, the difference functions 3, (s,) must be negative, 
and the differences must be increasing 

3,-(w + 1) > 3,(n). 

The problem becomes the following. For a given total cost C, defined by some 
initial section on the ordered list of sort values, find the level (s,) with the prop- 
erty that 

Z/,-(s,)< 2/i(s.-'), 
i i 

where s,' denotes any other level with total cost < C. By taking sort values 
defined by 

vM = - d-f±, 

the argument goes through as before, but with the appropriate sign changes. 

Note that marginal analysis produces solutions that are optimal, but may 
not produce all possible optimal solutions. The total costs defined by the initial 
sections on the ordered lists L represent a discrete set of possible values, and for 
those values the marginal analysis method yields optimal solutions. For inter- 
vening cost values, however, marginal analysis does not produce solutions. 
Finding optimal solutions for any specified cost would represent a version of the 
well-known knapsack problem. Practical applications to inventory problems 
suffer very little from this theoretical drawback. The set of solutions defined by 
the initial sections of the sort value lists is sufficiently rich to cover the full range 
of possible costs, expected backorder levels (EBO), and aircraft availability rates. 

Application 1 — Minimizing Expected 
Backorders at a Single Base 

Suppose we have a single location and a given set of components, 
i = 1,2,3,... I, each with procurement cost ct. We suppose that pipelines are 
determined by item characteristics and the operating scenario. We may consider 
the steady-state situation or the situation on a given day t in a dynamic scenario. 
We suppose also that depot spares levels are fixed, so our problem is to deter- 
mine least-cost base-level mixes (s;) to minimize £ EBO(i, s,), the sum of 
expected backorders for component i with spares level s,, subject to the total cost 
C = Z CiSi. In the notation of the previous section, letft(s) = EBO(i, s). Typically, 
but not necessarily, we start from a zero base [i.e., the initial assets n(i) = 0 for 
each i]. 
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Let p(i, x) be the probability distribution of the total base resupply pipeline 
for component i. 

Then 

EBO(i, s) = X   (x - s)p(i,x). 
x=s+l 

The EBO reduction from adding the sth spare of component i to the inventory is 

EBO(i,s - 1) - EBO(i,s) = X [x - (s - l)]p(i,x) - X  (x - s)p(i,x) 
x=s x=s+l 

= [s - (s - l)]p(z',s) +   X   [x - (s - 1) - (x - s)]p(i,x) 
JT=S + 1 

= P(i,s) + X   pO» 
x=s + l 

= X p(*',x). 
ar=s 

Thus expected backorder reductions are decreasing — i.e., the differences 
are negative and decreasing in magnitude. Therefore, we can apply the mini- 
mizing form of marginal analysis to show that forming a shopping list ranked in 
descending order of expected backorder reduction divided by cost yields initial 
segments that are undominated. That is, the spares levels corresponding to any 
such initial segment provides the lowest expected backorder total for its cost, 
and conversely. 

Application 2 — Minimizing Total Base Expected 
Backorders Over All Bases in a Multi-Echelon 
System 

This application is similar to the first one, except that our decision now 
involves distributing spares between base and depot as well, and we are inter- 
ested in the total of systemwide expected backorders over all bases, assuming 
that demand is equally distributed across bases. In this case, we let EBO(i, n) be 
the total — over all bases — of expected backorders for component i correspond- 
ing to a total inventory of n spares of component i, distributed optimally between 
bases and depot. The determination of this distribution, and thus the value of EBO 
(i, n), is a subproblem that must be solved by comparing alternative distribu- 
tions, using the approach outlined in the text. In this case, we cannot apply mar- 
ginal analysis directly to Z EBO(i, n), since the functions EBO(i, n), may not be 
convex (i.e., have differences of decreasing magnitude). Often the optimal 
base/depot distribution evolves by adding additional depot spares with mini- 
mal EBO reduction until a threshold is reached. Then, an additional spare 
allows a "flush out" of many spares to base level and a corresponding dramatic 
reduction in EBO. This phenomenon makes the final spare — or sometimes the 
next spare — seem more valuable than those immediately previous.     This 
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Situation is handled by treating such spares as a group and pooling their benefits 
and costs. Geometrically, we replace the function EBO(i, n) with its convex hull, 
eliminating the "spurious" intermediate points. We can then apply marginal 
analysis as before. 

Application 3 — Maximizing Aircraft 
Availability (Without Cannibalization) 

Suppose we wish to maximize aircraft availability in a multi-echelon envi- 
ronment (either in a steady state environment or at a specific day t in a dynamic 
scenario) for a fleet of aircraft composed of components i = 1, 2, 3, . . . I, all of 
which are line replaceable units (LRUs). Suppose also that we wish our spares 
mix not to rely on cannibalization. Let the expected backorder functions 
EBO(i, n) represent the total expected backorders for component i with n spares 
distributed optimally between bases and the depot. Let At{n) represent the prob- 
ability that a random aircraft is not missing a unit of component i, as in Equation 
2-20. Then we wish to find spares levels (s,) that maximize the availability 

A = n Aiisd, 
i 

subject to a cost constraint on C = £ c,- s,-. 

To apply the maximizing form of marginal analysis, we consider 
In A = E ln[Ai(s;)]. This is a separable sum of increasing functions, and max- 
imizing In A will, of course, maximize A. The differences 8,(s,) = In A,(s,) 
-InA, (s, - 1) are positive. However, as in Application 2, the multi-echelon 
tradeoff between base and depot may result in EBO(i, n) being nonconvex, 
which, in turn, results in lnL4,(n)] being nonconcave. That is, the differences 
may not be monotonically decreasing. We can apply the approach of the previ- 
ous section (i.e., take the concave hull of each In A,{n) by grouping spares 
together when nonconcavities occur to form a super-spare with an aggregate 
cost and an average benefit), providing a modified objective function to which 
we can apply marginal analysis. Thus, forming the shopping list L in order of 

T7, ,     lnA,(n) - hiAjjn, - 1) 
VAn) = Z{  

provides undominated solutions. [This is true with the restriction that we force 
component sort values to be decreasing by grouping them to form the concave 
hull of A^n). In practice, the only penalty one pays for this is a slight increase in 
the "graininess" of the availability-versus-cost curve — some of the cost and 
availability increments between entries have increased.] 

To incorporate shop replaceable units (SRUs) into this solution, we take the 
product above over the LRUs only. However, we first solve a subproblem 
within each LRU and its family of SRUs, so that EBO(z, n) now represents the 
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minimal expected backorders for LRU i with an expenditure of n X C,. divided 
optimally between spares of LRU i (with optimal base-depot distribution) and its 
SRUs. (See Sections 3.6.2 and 4.3.) 

APPLICATION 4 — Optimizing Confidence Level 
Suppose, at a single location, we wish to find a least-cost spares mix that 

maximizes the probability that fewer than T > 0 aircraft are down [that is, not 
mission-capable-supply (NMCS)] for lack of spares, and we allow cannibaliza- 
tion as an intrinsic element of our sparing strategy. Typically, we are interested 
in this problem at a particular point in time during a dynamic wartime scenario, 
but it may be addressed similarly in a steady-state context. For simplicity, we 
will assume that the quantity per application is 1 and that the application per- 
centage is 1.0 for all LRUs i on the aircraft. 

As in Chapter 4, we let X(. be the random variable of the number of compo- 
nents i in the resupply pipeline. Then, as in Equation 4-5, the probability of 
fewer than T aircraft being NMCS is given by 

p(NMCS < T) = n p(BOt < T) 
i 

= n p(x, < s, + T), 
i 

where BO{ represents the backorders for component i, si represents the spares 
level for component i, and the product is taken over all LRUs on the aircraft. 

As in Application 3, we can take the logarithm to express the objective func- 
tion as a sum of independent functions, 

In [p(NMCS < T)] - £ In p(BO, < T) 
i 

= £ In p(X, < s, + D 

and proceed as before. 
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Computing Backorder Statistics: 
An Example 

ASSUMPTIONS 

Our measure of overall supply performance is aircraft availability. In the 
dynamic case, we must also specify on which day we measure availability. It is 
frequently the case that availability must be examined on several days to capture 
a true picture of the dynamic situation. To estimate availability, we need to 
approximate the probability distribution of base backorders on those days. As 
we saw in Chapter 3, the probability distribution for backorders on a given day 
is easily obtained from the probability distribution for the number of items in the 
base resupply pipeline on that day. 

This example illustrates how the model calculates pipeline and backorder 
probability distributions for day 6 of a dynamic scenario. We begin with no 
stock at the depot, and then show how the base backorder probability distribu- 
tion function (PDF) changes as we add spares at the depot. 

We assume that the resupply times and failure rate per flying hour are con- 
stant (but different) for steady-state and dynamic conditions. All model compu- 
tations and outputs are defined as of the end of each day's flying activity. We 
assume the flying-hour program (FHP) shown in Table B-l, and we assume that 
demands arise from a nonhomogeneous Poisson process driven by flying hours, 
as in Equation 3-26. Table B-l describes a scenario with a five-day surge at six 
times the peacetime rate, followed by a sustained period at four times the peace- 
time rate. The first 15 days of this scenario are shown in Figure 3-1. 

Table B-1. 
Sample Scenario 

Day 0 1 2 3 4 5 6 

Flying hours per day 100 600 600 600 600 600 400 

Consider a particular line replaceable unit (LRU) with no subassemblies and 
item characteristics shown in Table B-2. Half of all failures are repaired at the 
depot level, the others are base reparable, there are no condemnations, and the 
failure rate is 0.01 per flying hour. We also assume that both the quantity per 
application (QPA) and the future application percentage (FAP) for this item 
are 1. 
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Table B-2. 
Item Information with Constant Resupply 

Item characteristics 

Item information 

Peacetime 
[steady state (f<0)] 

Wartime 
[dynamic (f >0)] 

Base repair time (BRT) 

Order and ship time (OST) 

Depot repair time (DRT) 

5 days 

3 days 

10 days 

5 days 

3 days 

10 days 

Failure factor = FF x FAP x QPA 0.01 per flying hour 0.01 per flying hour 

Not reparable this station = NRTS 0.5% 0.5% 

Condemnation rate = ConPCT 0% 0% 

PIPELINE STATISTICS 

We begin by using Equation 3-27 to compute the mean of the base repair 
pipeline on day zero: 

BRpipe(T) = Hr^mn-NRTSik)] 

= XL5+1 tFf(*)x FHp(fc)x QpA x FAp] c1 - NRTS (*H 
= 2L(°-01 x 100 x 1 x 1)(1 - 0.5) = 5 x (0.01 x 100) x 0.5 = 2.5. 

Because of our assumption that demand is a nonhomogeneous Poisson process, 
we have VBRpipe(0) = BRpipe(0) = 2.5. 

day: 
On day 6, the computation is similar, except that the flying hours vary by 

BRpipe(6)   = XL-5+1 [0-01 x FHP(fc)](l-0.5) 

= 6 x 0.5 + 6 x 0.5 + 6 x 0.5 + 6 x 0.5 + 4 x 0.5 
= 14; 

VBRpipe(6) = BRpipe{6) 

= 14. 

Simply put, to obtain the mean of the base repair pipeline on day T, accumu- 
late the mean base repair inductions (mean failures multiplied by the base repair 
rate) over the BRT days that end on day T. Note that a period of BRT days end- 
ing on day T encompasses days T-BRT + 1 through T. BRpipe(T) as a function 
of T is as shown in Figure B-l. 
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Figure B-1. 
Mean of Base Repair Pipeline for the Example 

Calculating the mean (and variance) of the OSpipe is analogous to calculat- 
ing the base repair pipeline: we accumulate the mean depot repair inductions 
over the interval (T - OST, T). From Equation 3-28 and the fact that OST = 3, we 
have 

OSpipe(6) = Zt=6_3+1 FF(k) x FHP(k) x NRTS(k) = 6 x 0.5 + 6 x 0.5 + 4 x 0.5 
= 8.0, 

and because of our nonhomogeneous Poisson demand assumption, we have 
VOSpipe(6) = OSpipe(6) = 8.0. 

Next we evaluate, for day T, expected depot backorders and the variance of 
depot backorders at time T - OST. The reason for looking back an OST is that 
conditions at the depot affect the base an OST later. (In our example, the depot 
could disappear on day 4 and the base would not be affected on day 6!) 

First we use Equation 3-29 to compute the mean and variance of the depot 
repair pipeline. Letting T = 6 and recalling that OST = 3, we have 

DRpipe(T - OST) = DRpipe(3) =    X     FF(k) x FHP(k) x NRTS(k) = 12.5. 
*= 6-3-10+1 
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BACKORDER STATISTICS WITH NO DEPOT STOCK 

Recall that the number of depot backorders in which we are interested is the 
number at time T - OST. Since we assume for the moment that the depot stock 
level s0 = 0, the number of depot backorders is equal to the number in the depot 
repair pipeline. Therefore DEBO(T- OST) = DEBO(3) = DRpipe(3) = 12.5. Because 
of our assumption that the demand process is nonhomogeneous Poisson, the 
depot repair pipeline at time T - OST is Poisson, and we have 

VDBO(T- OST) = VDBO(3) = VDRpipe(3) = DRpipe(3) = 12.5. 

Now we use Equations 3-30 and 3-31 to compute the mean and variance of 
the base resupply pipeline at time T = 6: 

Bpipe(6) = BRpipe(6) + OSpipe(6) + DEBO(3) = 14 + 8 +12.5 = 34.5, 

VBpipe(6) = VBRpipe(6) + VOSpipe(6) + VDBO(3) = 14 + 8 +12.5 = 34.5. 

(In general, the mean and variance of the base resupply time would be distinct.) 

From Equation 3-14, we have VMR(6) = ^-^ = ^| = 1, so that the probability 

distribution for the base resupply pipeline when the depot stock s0 = 0 is the 
Poisson distribution rather than the negative-binomial distribution in Equation 
3-15, 

Pr(BpipeRV6 -k)= ~         
k\ Jfc! 

If the base stock level is, say, s = 30, then the probability of no base backor- 
ders on day 6 is 

Pr(BORV6 = 0) = Fr(BpipeRVe < 30) = 2"0 ^-^ = 0.253. 

The probability of exactly 5 backorders is 

g-34.5/04 C-J35 

Fi(BORV6 = 5) = Fr(BpipeRV6 = 35) = y  ^ '    = 0.0670. 

And the probability of no more than 5 backorders is 

e"34,5C34 5)k 

Fr(BORV6<5) =Pr(BpipeRV6 < 35) =X,!0 JT~^ = °-578- 

The expected backorders on day 6 with s = 0 (no base stock) is just 

E[BORV(0,6)] = Bpipe(6) = 34.5. 
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Recasting Equation 3-22 to apply to expected base backorders rather than to 
expected depot backorders, we have the recursion formula 

E[BORV(s + 1, 6)] = E[BORV(s,6)]- 
e-345(34.5)* 

fc! 

Applying this formula repeatedly, we find with s = 30, the expected base backor- 
ders figure is £[601^(30,6)] = 5.21. Similar calculations yield the base backor- 
der PDF and the expected backorders for days other than day 6. 

BACKORDER STATISTICS WITH POSITIVE, 

FINITE DEPOT STOCK 

Suppose we now increase the depot stock level from zero to one. We con- 
tinue to focus on day 6. The means and variances of the base repair pipeline, of 
the order and ship pipeline, and of the depot repair pipeline on day 6 remain as 
before; they are not affected by the depot stock level. 

We compute the mean and variance of depot backorders using the recursion 
relations in Equations 3-22 and 3-23, together with Equation 3-25. From 
Equation 3-22, we have 

DEBO(s0 + 1, T-OST) = DEBO(s0,T- OST) i - JZ, m 

where P(fc) is the probability that the DRpipeRV = fc at time T - OST. Putting 
s0 = 0, T = 6, and OST = 3 and recalling that the depot repair pipeline at T = 6 is a 
Poisson random variable with mean 12.5, we find that the figure for expected 
depot backorders on day 3 with a depot stock level of 1 is 

DEBO(l, 3) = DEBO(0,3) - [1 - P(0)] = DRpipe(3) - (1 - e 125) 
= 12.5-a-3.7xl0-6) 
= 11.5 

(here P(0) is the probability that the DRpipe is zero on day 3). 

Using Equation 3-23, we find that the second moment for depot backorders 
is 

DE2BO(s0 + 1, T - OST) = DE2BO(s0/T-OST)-DEBO(s0,T-OST) 
-DEBO(s0 + l,T-OST). 

Again putting s0 = 0, T = 6, and OST = 3 and recalling Equation 3-24, we find 
that 

DE2BO(0, 3) = VDBO(0, 3) + DEBO(0, 3)2 = 12.5 + (12.5)2 = 168.75, 
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and 

DE2BO(l,3) = DE2BO(0/3)-DEBO(0/3)-D£BO(l/3) 
= 168.75-12.5-11.5 

= 144.75. 

From Equation 3-25, we find that the variance of depot backorders is 

VDBO0-, 3) = DE2BO(l, 3) - DEBOQ., 3)2 = 144.75 - (11.5)2 = 12.5. 

We now calculate the mean and variance of the base resupply pipeline on 
day 6 as we did before: 

Bpipe(6) = BRpipe(6) + OSpipe(6) + DEBOQ., 3) = 14 + 8 + 11.5 = 33.5; 

VBpipe{6) = VBRpipe(6) + VOSpipe(6) + VDBO(l, 3) - 14 + 8 + 12.5 = 34.5. 

The variance-to-mean ratio of the base resupply pipeline on day 6 is 

^^ = 1.02985 (the calculations that follow require more precision than what we 
i •    i 

have been using). Since this figure is larger than 1, we use the negative binomial 
(Vari-METRIC) approximation to the PDF for the number of items in this pipe- 
line on day 6, as given in Equation 3-15: 

r *+■ K9 i „6, 
v     VMR(6)-l)(VMR(6)-1V(     \      \ ™*»» 

Fr(BpipeRV6 = k)=    <   ,      m      y{   VMR{6)   ) [^R(6). 
!I\vMR(6)-l. 

or 

m+—^_i          k 
r> ,n •   7PT7     iA V     1.02985-Ufl.02985-1 yr     1 
Fr(BpipeRV6 = k) = ^ [   im85   j ^ Q29g5 

!FU.02985-lJ 

=    r(fc+1122.5) , H22.5 
Jfc!r(1122.5) 

As we did before, assume that the base stock level s = 30. The probability of 
no base backorders with s0 = 1 is 

Pr(BORV6 = 0)  = Fr(BpipeRV6< 30) 

,30  T(k+1122.5) 
Jk!r(1122.5) 

= 0.313; 

= JZo  i .tT,\Z, ;? (0.02899)t(0.97)1 
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for comparison, the probability of no backorders at the base with no depot stock 
was 0.253. (Note: Because of the difficulty in computing ratios of large values of 
the gamma function directly, we have computed this probability using the 
recursion formula for the negative binomial distribution — see Appendix C). 

The probability of exactly 5 base backorders with s = 30 and s0 = 1 is 

Pr(BORV6 = 5)   = Pr(BpipeRV6 = 35) 
=    H35+1122.5) 35 „22.5 

35!r(l 122.5) v '   y      ' 
= 0.0642, 

and the probability of no more than 5 base backorders is 

Pr(BORV6 <5)  = Pr(BpipeRV6 < 35) 

= 2£0 
r^mS))(a02899)t(a97)11225 

= 0.643. 

For comparison, these probabilities were 0.067 and 0.578, respectively, with no 
depot stock. These comparisons illustrate the fact that adding depot stock has 
reduced the likelihood of any particular number of base backorders. 

The expected backorders on day 6 with s0 = 0 (no base stock) is just 
E[BORV(0,6)] = Bpipe(6) = 33.5. Using the recursion formula for expected back- 
orders, we have 

E[BORV(s +1,6)] = E[BORV(s,6)] -1 -Tk=0  7!,tT//ot cV (0.02899)*(0.97)11225 T(k+1122.5) /n noonm*, 
Jfc!r(1122.5) 

Applying this repeatedly, we find that with s = 30 and s0 = 1, the expected base 
backorders figure is 4.46. For comparison, the expected base backorders figure 
with s = 30 and s0 = 0 was 5.21, so we see that, in this example, increasing the 
depot stock level by 1 has brought down the mean number of backorders on day 
6 significantly. 

SUMMARY 

In this appendix, we have shown how to compute the means and variances 
of the various components of the base resupply pipeline, and how to use these 
pipeline statistics to approximate the PDF and the mean of base backorders. We 
have done this under the assumption that flying hours, and therefore the 
demand process, may change over time, but that the resupply times are constant. 
In the case of varying resupply times, or in the case where we consider backor- 
ders of lower indenture items, our approach is quite similar. 
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Recursion Formula for Negative 
Binomial Distribution 

Appendix B discusses methods for computing the reduction in expected 
backorders resulting from adding spares. That appendix used a recursion for- 
mula for the negative binomial distribution, which we present below. 

The value of the negative binomial distribution with parameters n and p at a 
positive integer x is given by 

where T denotes the gamma function, defined for real u > 0 by 

r(u) = jtule-tdt. 

It  can  be  shown  that  the  negative  binomial   distribution  has  mean 

u = and variance o = 
n(l-p) 

(For example, a negative binomial ran- 

dom variable can be expressed as a sum of independent geometric random vari- 
ables, whose means and variances are easy to compute.1 In Chapter 3, we know 

(j. and a2, rather than n and p, but straightforward algebra shows that p = —, and 

1^ 
n = ■ 

oi_l 

Using the fact that for any integer, x > 1, T(x +1) = xT(x), we see that for all 
such x, 

Nb(x\n,p) = ^Mp«(1_p)x 

r(x + n-l) 
(x-l)\T(n)HK     y> 

Nb(x-l\n,p). 

1 William Feller, An Introduction to Probability Theory and Its Applications, New York: 
John Wiley and Sons, Inc., Vol. 1,3rd Edition, 1968. 
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Glossary 

AAM 

AOG 

AP 

ASM 

AWP 

BO 

BORV 

Bpipe 

BpipeRV 

BRpipe 

BRpipeRV 

BRT 

BRTNHA 

BRTLRU 

CDF 

ConPCT 

DBORV 

DEBO 

DoD 

DI 

Aircraft Availability Model 

aircraft on ground 

application percentage 

Aircraft Sustainability Model 

awaiting parts 

backorders 

number of base backorders (random variable) 

base resupply pipeline (physical process) or mean number 
of items in that pipeline 

number of units in base resupply pipeline (random 
varible) 

base repair pipeline (physical process) or mean number of 
items in that pipeline 

number of units in base repair pipeline (random variable) 

base repair time 

base repair time for next higher assembly 

base repair time for LRU 

cumulative distribution function 

condemnation percentage 

number of depot backorders (random variable) 

depot expected backorders 

Department of Defense 

due in 
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DO 

DRT 

DRpipe 

DRpipeRV 

DSO 

EBO 

ENMCS 

FAP 

FF 

FHP 

FIFO 

FIT 

IAF 

ISAAC 

I(t) 

JSTARS 

LMI 

LRU 

METRIC 

MRSP 

NAC 

NHA 

NMCB 

NMCM 

due out 

depot repair time 

depot repair pipeline (physical process) or mean number 
of items in that pipeline 

number of units in depot repair pipeline (random variable) 

direct support objective 

expected backorders 

expected not mission capable - supply 

future application percentage 

failure factor (failures per flying hour) 

flying-hour program 

first in, first out 

fault isolation time 

Israel Air Force 

Initial Spares Aircraft Availability Calculation 

induction time for item emerging from pipeline at time t 

Joint Surveillance Target Attack Radar System 

Logistics Management Institute 

line replaceable unit 

Multi-Echelon Technique for Recoverable Items Control 

mobility readiness spares package 

number of aircraft 

next higher assembly 

not mission capable - both (maintenance and supply) 

not mission capable - maintenance 
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NMCS =       not mission capable - supply 

NRTS =       not reparable this station 

OH =       on hand 

OSpipe =      order and ship pipeline (physical process) or mean 
number of items in that pipeline 

OSpipeRV number of units in order and ship pipeline 
(random variable) 

OST order and ship time 

PDF probability distribution function 

PLT procurement lead-time 

PLTT procurement lead-time total 

Q order quantity 

QPA quantity per application 

r                          = reorder point 

RAT reassembly time 

RR mean repair rate 

RT mean repair time 

SRU shop replaceable unit 

ST resupply suspension time 

TI, total installed for part / 

TNMCS total not mission capable - supply 

TOIMDR total organizational and intermedi 
demand rate 

USAF United States Air Force 

Vari-METRIC    = model based on METRIC model w 
pipeline variance 
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VBRpipe =       variance of base repair pipeline 

VDBO =      variance of depot backorders 

VMR =      variance-to-mean ratio 

D-6 



REPORT DOCUMENTATION PAGE Form Approved 
OPMNo.0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources 
gathering, and maintaining the data needed, and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of 
information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, 
Suite 1204, Arlington, VA 22202-4302, and to the Office of Information and Regulatory Affairs, Office of Management and Budget, Washington, DC 20503. 

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 

Oct96 

3. REPORT TYPE AND DATES COVERED 

Final 

4. TITLE AND SUBTITLE 

Optimizing Spares Support: The Aircraft sustainability Model 

6. AUTHOR(S) 

F. Michael Slay, Tovey C. Bachman, Robert C. Kline, T. J. O'Malley, Frank L. Eichorn, Randall M. King 

5.  FUNDING NUMBERS 

CDASW01-95-C-0019 

PE0902198D 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Logistics Management Institute 
2000 Corporate Ridge 
McLean, VA 22102-7805 

8.  PERFORMING ORGANIZATION 
REPORT NUMBER 

LMI-AF501MR1 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

HQ USAF/LG 
Room 4E260, The Pentagon 
Washington, DC 20330 

10. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES 

12a.  DISTRIBUTION/AVAILABILITY STATEMENT 

A: Approved for public release; distribution unlimited 

12b. DISTRIBUTION CODE 

13. ABSTRACT (Maximum 200 words) 

Modern inventory management typically relies, when possible, on quick deliveries from suppliers, and aims to carry minimal inventory. Such practices work 
best in managing low-cost items with stable demand and significant market size. But supporting advanced military equipment poses unique problems: small 
fleet sizes and low operating tempos lead to sporadic and unstable demand patterns; components are highly specialized, have limited or uncertain sources of 
supply, and often procurement lead-times of years. 

The Aircraft Sustainability Model (ASM), developed by the Logistics Management Institute for the United States Air Force, is a mathematical model that 
computes optimal spares mixes to support a wide range of possible operating scenarios. The ASM sizes spares levels based on desired weapon system readiness 
levels, rather than on supply-oriented measures, such as stock on shelf or percent of demands filled. The ASM has been used by the USAF to determine spares 
kits to support wartime squadron deployments; an enhanced version handles initial provisioning. 

This report describes the model, the problems it was developed to solve, and the mathematical techniques it uses to solve them. It is intended for readers with 
some background in probability and statistics. Familiarity with multi-echelon inventory theory is not required. 

14. SUBJECT TERMS 
Aircraft, availability, cannibalization, deployment, initial provisioning, inventory, inventory management, 

inventory model, multi-echelon, multi-indenture, optimization, readiness, resource allocation, safety level, spares, stock 
level, stockage policy, supply, supply management, supply model, sustainability, war reserve, weapon system support 

15. NUMBER OF PAGES 

154 

16. PRICE CODE 

17. SECURITY CLASSIFICATION 
OF REPORT 

Unclassified 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 

Unclassified 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

Unclassified 

20. LIMITATION OF ABSTRACT 

UL 

NSN 7540-01-280-5500 Standard Form 298, (Rev. 2-89) 
Prescribed by ANSI Std. 239-18 


